Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab Structured version   Unicode version

Theorem hbab 2427
 Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
hbab.1
Assertion
Ref Expression
hbab
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2423 . 2
2 hbab.1 . . 3
32hbsb 2186 . 2
41, 3hbxfrbi 1577 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549  wsb 1658   wcel 1725  cab 2422 This theorem is referenced by:  nfsab  2428  bnj1441  29212  bnj1309  29391 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423
 Copyright terms: Public domain W3C validator