MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab1 Structured version   Unicode version

Theorem hbab1 2424
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbab1  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2422 . 2  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
2 hbs1 2180 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
31, 2hbxfrbi 1577 1  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549   [wsb 1658    e. wcel 1725   {cab 2421
This theorem is referenced by:  nfsab1  2425  abeq2  2540  abeq2f  23952  bnj1317  29130  bnj1318  29331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422
  Copyright terms: Public domain W3C validator