Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1893
 Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbae

Proof of Theorem hbae
StepHypRef Expression
1 sp 1716 . . . . 5
2 ax12o 1875 . . . . 5
31, 2syl7 63 . . . 4
4 ax10o 1892 . . . . 5
54aecoms 1887 . . . 4
6 ax10o 1892 . . . . . . 7
76pm2.43i 43 . . . . . 6
8 ax10o 1892 . . . . . 6
97, 8syl5 28 . . . . 5
109aecoms 1887 . . . 4
113, 5, 10pm2.61ii 157 . . 3
1211a5i 1758 . 2
13 ax-7 1708 . 2
1412, 13syl 15 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1527 This theorem is referenced by:  nfae  1894  hbnae  1895  dral1  1905  dral2  1906  drex2  1908  aev  1931  a9e2eq  28323  a12stdy3  29128 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator