MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbald Unicode version

Theorem hbald 1714
Description: Deduction form of bound-variable hypothesis builder hbal 1710. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
hbald.1  |-  ( ph  ->  A. y ph )
hbald.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbald  |-  ( ph  ->  ( A. y ps 
->  A. x A. y ps ) )

Proof of Theorem hbald
StepHypRef Expression
1 hbald.1 . . 3  |-  ( ph  ->  A. y ph )
2 hbald.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
31, 2alimdh 1550 . 2  |-  ( ph  ->  ( A. y ps 
->  A. y A. x ps ) )
4 ax-7 1708 . 2  |-  ( A. y A. x ps  ->  A. x A. y ps )
53, 4syl6 29 1  |-  ( ph  ->  ( A. y ps 
->  A. x A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527
This theorem is referenced by:  dvelimhw  1735  dvelimv  1879  dvelimh  1904  dvelimALT  2072  dvelimf-o  2119  ax10lem17ALT  29123  dvelimfALT2OLD  29125  ax9lem17  29156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-gen 1533  ax-5 1544  ax-7 1708
  Copyright terms: Public domain W3C validator