Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hban Unicode version

Theorem hban 1736
 Description: If is not free in and , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
hban.1
hban.2
Assertion
Ref Expression
hban

Proof of Theorem hban
StepHypRef Expression
1 df-an 360 . 2
2 hban.1 . . . 4
3 hban.2 . . . . 5
43hbn 1720 . . . 4
52, 4hbim 1725 . . 3
65hbn 1720 . 2
71, 6hbxfrbi 1555 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wal 1527 This theorem is referenced by:  hb3an  1759  dvelimv  1879  dvelimh  1904  dvelimALT  2072  dvelimf-o  2119  ax11indalem  2136  ax11inda2ALT  2137  cleqh  2380  hbimpg  28320  hbimpgVD  28680  bnj982  28810  bnj1351  28859  bnj1352  28860  bnj1441  28873  ax12-2  29103  ax10lem17ALT  29123  a12studyALT  29133 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360
 Copyright terms: Public domain W3C validator