MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbim1 Unicode version

Theorem hbim1 1817
Description: A closed form of hbim 1824. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
hbim1.1  |-  ( ph  ->  A. x ph )
hbim1.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbim1  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )

Proof of Theorem hbim1
StepHypRef Expression
1 hbim1.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
21a2i 12 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  A. x ps ) )
3 hbim1.1 . . 3  |-  ( ph  ->  A. x ph )
4319.21h 1803 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
52, 4sylibr 203 1  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1545
This theorem is referenced by:  nfim1  1818  hbim  1824  ax12olem6  1945  ax15  2034  ax12olem6NEW7  28884  ax15NEW7  28959  a12study2  29205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-11 1751
This theorem depends on definitions:  df-bi 177  df-ex 1547  df-nf 1550
  Copyright terms: Public domain W3C validator