Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbimpgVD Unicode version

Theorem hbimpgVD 28734
Description: Virtual deduction proof of hbimpg 28360. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 28360 is hbimpgVD 28734 without virtual deductions and was automatically derived from hbimpgVD 28734. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ).
2:1:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ph  ->  A. x ph ) ).
3::  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  -.  ph ).
4:2:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( -.  ph  ->  A. x -.  ph ) ).
5:4:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x -.  ph ) ).
6:3,5:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  A. x -.  ph ).
7::  |-  ( -.  ph  ->  ( ph  ->  ps ) )
8:7:  |-  ( A. x -.  ph  ->  A. x ( ph  ->  ps ) )
9:6,8:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,  -.  ph  ->.  A. x ( ph  ->  ps ) ).
10:9:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x ( ph  ->  ps ) ) ).
11::  |-  ( ps  ->  ( ph  ->  ps ) )
12:11:  |-  ( A. x ps  ->  A. x ( ph  ->  ps ) )
13:1:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ps  ->  A. x ps ) ).
14:13:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x ps ) ).
15:14,12:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x ( ph  ->  ps ) ) ).
16:10,15:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( -.  ph  \/  ps )  ->  A. x ( ph  ->  ps ) ) ).
17::  |-  ( ( ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
18:16,17:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) ).
19::  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x A. x (  ph  ->  A. x ph ) )
20::  |-  ( A. x ( ps  ->  A. x ps )  ->  A. x A. x (  ps  ->  A. x ps ) )
21:19,20:  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->  A. x ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) )
22:21,18:  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) ).
qed:22:  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->  A. x ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) )
Assertion
Ref Expression
hbimpgVD  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
)  ->  A. x
( ( ph  ->  ps )  ->  A. x
( ph  ->  ps )
) )

Proof of Theorem hbimpgVD
StepHypRef Expression
1 hba1 1800 . . . 4  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x A. x (
ph  ->  A. x ph )
)
2 hba1 1800 . . . 4  |-  ( A. x ( ps  ->  A. x ps )  ->  A. x A. x ( ps  ->  A. x ps ) )
31, 2hban 1846 . . 3  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
)  ->  A. x
( A. x (
ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
) )
4 idn2 28432 . . . . . . . 8  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,.  -.  ph  ->.  -.  ph ).
5 idn1 28383 . . . . . . . . . . 11  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
) ).
6 simpl 444 . . . . . . . . . . 11  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
)  ->  A. x
( ph  ->  A. x ph ) )
75, 6e1_ 28446 . . . . . . . . . 10  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ph  ->  A. x ph ) ).
8 hbntal 28359 . . . . . . . . . 10  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x ( -.  ph  ->  A. x  -.  ph ) )
97, 8e1_ 28446 . . . . . . . . 9  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( -.  ph  ->  A. x  -.  ph ) ).
10 sp 1759 . . . . . . . . 9  |-  ( A. x ( -.  ph  ->  A. x  -.  ph )  ->  ( -.  ph  ->  A. x  -.  ph ) )
119, 10e1_ 28446 . . . . . . . 8  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x  -.  ph ) ).
12 pm2.27 37 . . . . . . . 8  |-  ( -. 
ph  ->  ( ( -. 
ph  ->  A. x  -.  ph )  ->  A. x  -.  ph ) )
134, 11, 12e21 28560 . . . . . . 7  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,.  -.  ph  ->.  A. x  -.  ph ).
14 pm2.21 102 . . . . . . . 8  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
1514alimi 1565 . . . . . . 7  |-  ( A. x  -.  ph  ->  A. x
( ph  ->  ps )
)
1613, 15e2 28450 . . . . . 6  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) ) ,.  -.  ph  ->.  A. x
( ph  ->  ps ) ).
1716in2 28424 . . . . 5  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( -.  ph  ->  A. x
( ph  ->  ps )
) ).
18 simpr 448 . . . . . . . 8  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
)  ->  A. x
( ps  ->  A. x ps ) )
195, 18e1_ 28446 . . . . . . 7  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ps  ->  A. x ps ) ).
20 sp 1759 . . . . . . 7  |-  ( A. x ( ps  ->  A. x ps )  -> 
( ps  ->  A. x ps ) )
2119, 20e1_ 28446 . . . . . 6  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x ps ) ).
22 ax-1 5 . . . . . . 7  |-  ( ps 
->  ( ph  ->  ps ) )
2322alimi 1565 . . . . . 6  |-  ( A. x ps  ->  A. x
( ph  ->  ps )
)
24 imim1 72 . . . . . 6  |-  ( ( ps  ->  A. x ps )  ->  ( ( A. x ps  ->  A. x ( ph  ->  ps ) )  ->  ( ps  ->  A. x ( ph  ->  ps ) ) ) )
2521, 23, 24e10 28513 . . . . 5  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ps  ->  A. x
( ph  ->  ps )
) ).
26 jao 499 . . . . 5  |-  ( ( -.  ph  ->  A. x
( ph  ->  ps )
)  ->  ( ( ps  ->  A. x ( ph  ->  ps ) )  -> 
( ( -.  ph  \/  ps )  ->  A. x
( ph  ->  ps )
) ) )
2717, 25, 26e11 28507 . . . 4  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( -.  ph  \/  ps )  ->  A. x
( ph  ->  ps )
) ).
28 imor 402 . . . 4  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
29 imbi1 314 . . . . 5  |-  ( ( ( ph  ->  ps ) 
<->  ( -.  ph  \/  ps ) )  ->  (
( ( ph  ->  ps )  ->  A. x
( ph  ->  ps )
)  <->  ( ( -. 
ph  \/  ps )  ->  A. x ( ph  ->  ps ) ) ) )
3029biimprcd 217 . . . 4  |-  ( ( ( -.  ph  \/  ps )  ->  A. x
( ph  ->  ps )
)  ->  ( (
( ph  ->  ps )  <->  ( -.  ph  \/  ps ) )  ->  (
( ph  ->  ps )  ->  A. x ( ph  ->  ps ) ) ) )
3127, 28, 30e10 28513 . . 3  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  ( ( ph  ->  ps )  ->  A. x
( ph  ->  ps )
) ).
323, 31gen11nv 28436 . 2  |-  (. ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps  ->  A. x ps ) )  ->.  A. x ( ( ph  ->  ps )  ->  A. x
( ph  ->  ps )
) ).
3332in1 28380 1  |-  ( ( A. x ( ph  ->  A. x ph )  /\  A. x ( ps 
->  A. x ps )
)  ->  A. x
( ( ph  ->  ps )  ->  A. x
( ph  ->  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-11 1757
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-ex 1548  df-nf 1551  df-vd1 28379  df-vd2 28388
  Copyright terms: Public domain W3C validator