Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn Structured version   Unicode version

Theorem hbn 1801
 Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Dec-2017.)
Hypothesis
Ref Expression
hbn.1
Assertion
Ref Expression
hbn

Proof of Theorem hbn
StepHypRef Expression
1 hbnt 1799 . 2
2 hbn.1 . 2
31, 2mpg 1557 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1549 This theorem is referenced by:  hba1  1804  hbimOLD  1837  spimehOLD  1840  hbanOLD  1851  hbex  1863  cbv3hvOLD  1879  hbnae  2043  hbnae-o  2256  vk15.4j  28612  vk15.4jVD  29026  cbv3hvNEW7  29446  hbexwAUX7  29449  hbnaewAUX7  29481  hbnaew2AUX7  29484  ax7w2AUX7  29650  ax7w6AUX7  29652  hbexOLD7  29685  hbnaeOLD7  29710 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551
 Copyright terms: Public domain W3C validator