Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1fw Unicode version

Theorem hbn1fw 1679
 Description: Weak version of ax-6 1703 from which we can prove any ax-6 1703 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.)
Hypotheses
Ref Expression
hbn1fw.1
hbn1fw.2
hbn1fw.3
hbn1fw.4
hbn1fw.5
hbn1fw.6
Assertion
Ref Expression
hbn1fw
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem hbn1fw
StepHypRef Expression
1 hbn1fw.1 . . . . 5
2 hbn1fw.2 . . . . 5
3 hbn1fw.3 . . . . 5
4 hbn1fw.4 . . . . 5
5 hbn1fw.6 . . . . 5
61, 2, 3, 4, 5cbvalw 1675 . . . 4
76biimpri 197 . . 3
87con3i 127 . 2
9 hbn1fw.5 . 2
106biimpi 186 . . . 4
1110con3i 127 . . 3
1211alimi 1546 . 2
138, 9, 123syl 18 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176  wal 1527 This theorem is referenced by:  hbn1w  1680 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
 Copyright terms: Public domain W3C validator