MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnaes Unicode version

Theorem hbnaes 1910
Description: Rule that applies hbnae 1908 to antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbnalequs.1  |-  ( A. z  -.  A. x  x  =  y  ->  ph )
Assertion
Ref Expression
hbnaes  |-  ( -. 
A. x  x  =  y  ->  ph )

Proof of Theorem hbnaes
StepHypRef Expression
1 hbnae 1908 . 2  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
2 hbnalequs.1 . 2  |-  ( A. z  -.  A. x  x  =  y  ->  ph )
31, 2syl 15 1  |-  ( -. 
A. x  x  =  y  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1530
This theorem is referenced by:  sbal1  2078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
  Copyright terms: Public domain W3C validator