Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbntal Unicode version

Theorem hbntal 28319
Description: A closed form of hbn 1720. hbnt 1724 is another closed form of hbn 1720. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbntal  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x ( -.  ph  ->  A. x  -.  ph ) )

Proof of Theorem hbntal
StepHypRef Expression
1 hba1 1719 . 2  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x A. x (
ph  ->  A. x ph )
)
2 ax6o 1723 . . . . 5  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
32con1i 121 . . . 4  |-  ( -. 
ph  ->  A. x  -.  A. x ph )
4 con3 126 . . . . 5  |-  ( (
ph  ->  A. x ph )  ->  ( -.  A. x ph  ->  -.  ph ) )
54al2imi 1548 . . . 4  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x  -.  A. x ph  ->  A. x  -.  ph ) )
63, 5syl5 28 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)
76alimi 1546 . 2  |-  ( A. x A. x ( ph  ->  A. x ph )  ->  A. x ( -. 
ph  ->  A. x  -.  ph ) )
81, 7syl 15 1  |-  ( A. x ( ph  ->  A. x ph )  ->  A. x ( -.  ph  ->  A. x  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  hbimpg  28320  hbimpgVD  28680  hbexgVD  28682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
  Copyright terms: Public domain W3C validator