Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Unicode version

Theorem hbtlem1 27318
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
hbtlem1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Distinct variable groups:    j, I,
k    R, j, k    j, X, k
Allowed substitution hints:    D( j, k)    P( j, k)    S( j, k)    U( j, k)    V( j, k)

Proof of Theorem hbtlem1
Dummy variables  i 
r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6  |-  S  =  (ldgIdlSeq `  R )
2 elex 2966 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 5731 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
4 hbtlem.p . . . . . . . . . . . 12  |-  P  =  (Poly1 `  R )
53, 4syl6eqr 2488 . . . . . . . . . . 11  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
65fveq2d 5735 . . . . . . . . . 10  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
7 hbtlem.u . . . . . . . . . 10  |-  U  =  (LIdeal `  P )
86, 7syl6eqr 2488 . . . . . . . . 9  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
9 fveq2 5731 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
10 hbtlem.d . . . . . . . . . . . . . . . 16  |-  D  =  ( deg1  `  R )
119, 10syl6eqr 2488 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
1211fveq1d 5733 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  k )  =  ( D `  k ) )
1312breq1d 4225 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  k )  <_  x  <->  ( D `  k )  <_  x ) )
1413anbi1d 687 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1514rexbidv 2728 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( E. k  e.  i 
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1615abbidv 2552 . . . . . . . . . 10  |-  ( r  =  R  ->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) }  =  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )
1716mpteq2dv 4299 . . . . . . . . 9  |-  ( r  =  R  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
188, 17mpteq12dv 4290 . . . . . . . 8  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
19 df-ldgis 27317 . . . . . . . 8  |- ldgIdlSeq  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) )
20 fvex 5745 . . . . . . . . . 10  |-  (LIdeal `  P )  e.  _V
217, 20eqeltri 2508 . . . . . . . . 9  |-  U  e. 
_V
2221mptex 5969 . . . . . . . 8  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  e.  _V
2318, 19, 22fvmpt 5809 . . . . . . 7  |-  ( R  e.  _V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
242, 23syl 16 . . . . . 6  |-  ( R  e.  V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
251, 24syl5eq 2482 . . . . 5  |-  ( R  e.  V  ->  S  =  ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) )
2625fveq1d 5733 . . . 4  |-  ( R  e.  V  ->  ( S `  I )  =  ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) )
2726fveq1d 5733 . . 3  |-  ( R  e.  V  ->  (
( S `  I
) `  X )  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )
)
28273ad2ant1 979 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I ) `
 X ) )
29 rexeq 2907 . . . . . . 7  |-  ( i  =  I  ->  ( E. k  e.  i 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
3029abbidv 2552 . . . . . 6  |-  ( i  =  I  ->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } )
3130mpteq2dv 4299 . . . . 5  |-  ( i  =  I  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
32 eqid 2438 . . . . 5  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
33 nn0ex 10232 . . . . . 6  |-  NN0  e.  _V
3433mptex 5969 . . . . 5  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  e.  _V
3531, 32, 34fvmpt 5809 . . . 4  |-  ( I  e.  U  ->  (
( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
3635fveq1d 5733 . . 3  |-  ( I  e.  U  ->  (
( ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
37363ad2ant2 980 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
38 simp3 960 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  X  e.  NN0 )
39 simpr 449 . . . . . 6  |-  ( ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  j  =  ( (coe1 `  k
) `  X )
)
4039reximi 2815 . . . . 5  |-  ( E. k  e.  I  ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) )
4140ss2abi 3417 . . . 4  |-  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } 
C_  { j  |  E. k  e.  I 
j  =  ( (coe1 `  k ) `  X
) }
42 abrexexg 5987 . . . . 5  |-  ( I  e.  U  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )
43423ad2ant2 980 . . . 4  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k
) `  X ) }  e.  _V )
44 ssexg 4352 . . . 4  |-  ( ( { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  C_  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  /\  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )
4541, 43, 44sylancr 646 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  e.  _V )
46 breq2 4219 . . . . . . 7  |-  ( x  =  X  ->  (
( D `  k
)  <_  x  <->  ( D `  k )  <_  X
) )
47 fveq2 5731 . . . . . . . 8  |-  ( x  =  X  ->  (
(coe1 `  k ) `  x )  =  ( (coe1 `  k ) `  X ) )
4847eqeq2d 2449 . . . . . . 7  |-  ( x  =  X  ->  (
j  =  ( (coe1 `  k ) `  x
)  <->  j  =  ( (coe1 `  k ) `  X ) ) )
4946, 48anbi12d 693 . . . . . 6  |-  ( x  =  X  ->  (
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5049rexbidv 2728 . . . . 5  |-  ( x  =  X  ->  ( E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5150abbidv 2552 . . . 4  |-  ( x  =  X  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
52 eqid 2438 . . . 4  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )
5351, 52fvmptg 5807 . . 3  |-  ( ( X  e.  NN0  /\  { j  |  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5438, 45, 53syl2anc 644 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5528, 37, 543eqtrd 2474 1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708   _Vcvv 2958    C_ wss 3322   class class class wbr 4215    e. cmpt 4269   ` cfv 5457    <_ cle 9126   NN0cn0 10226  LIdealclidl 16247  Poly1cpl1 16576  coe1cco1 16579   deg1 cdg1 19982  ldgIdlSeqcldgis 27316
This theorem is referenced by:  hbtlem2  27319  hbtlem4  27321  hbtlem3  27322  hbtlem5  27323  hbtlem6  27324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-i2m1 9063  ax-1ne0 9064  ax-rrecex 9067  ax-cnre 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-recs 6636  df-rdg 6671  df-nn 10006  df-n0 10227  df-ldgis 27317
  Copyright terms: Public domain W3C validator