Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Unicode version

Theorem hbtlem6 27333
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem6.n  |-  N  =  (RSpan `  P )
hbtlem6.r  |-  ( ph  ->  R  e. LNoeR )
hbtlem6.i  |-  ( ph  ->  I  e.  U )
hbtlem6.x  |-  ( ph  ->  X  e.  NN0 )
Assertion
Ref Expression
hbtlem6  |-  ( ph  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
)
Distinct variable groups:    ph, k    k, I    R, k    S, k   
k, X
Allowed substitution hints:    P( k)    U( k)    N( k)

Proof of Theorem hbtlem6
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3  |-  ( ph  ->  R  e. LNoeR )
2 lnrrng 27316 . . . . 5  |-  ( R  e. LNoeR  ->  R  e.  Ring )
31, 2syl 15 . . . 4  |-  ( ph  ->  R  e.  Ring )
4 hbtlem6.i . . . 4  |-  ( ph  ->  I  e.  U )
5 hbtlem6.x . . . 4  |-  ( ph  ->  X  e.  NN0 )
6 hbtlem.p . . . . 5  |-  P  =  (Poly1 `  R )
7 hbtlem.u . . . . 5  |-  U  =  (LIdeal `  P )
8 hbtlem.s . . . . 5  |-  S  =  (ldgIdlSeq `  R )
9 eqid 2283 . . . . 5  |-  (LIdeal `  R )  =  (LIdeal `  R )
106, 7, 8, 9hbtlem2 27328 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  e.  (LIdeal `  R )
)
113, 4, 5, 10syl3anc 1182 . . 3  |-  ( ph  ->  ( ( S `  I ) `  X
)  e.  (LIdeal `  R ) )
12 eqid 2283 . . . 4  |-  (RSpan `  R )  =  (RSpan `  R )
139, 12lnr2i 27320 . . 3  |-  ( ( R  e. LNoeR  /\  (
( S `  I
) `  X )  e.  (LIdeal `  R )
)  ->  E. a  e.  ( ~P ( ( S `  I ) `
 X )  i^i 
Fin ) ( ( S `  I ) `
 X )  =  ( (RSpan `  R
) `  a )
)
141, 11, 13syl2anc 642 . 2  |-  ( ph  ->  E. a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) ( ( S `
 I ) `  X )  =  ( (RSpan `  R ) `  a ) )
15 elfpw 7157 . . . . 5  |-  ( a  e.  ( ~P (
( S `  I
) `  X )  i^i  Fin )  <->  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )
16 fvex 5539 . . . . . . . . 9  |-  ( (coe1 `  b ) `  X
)  e.  _V
17 eqid 2283 . . . . . . . . 9  |-  ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  =  ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
1816, 17fnmpti 5372 . . . . . . . 8  |-  ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  Fn 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }
1918a1i 10 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  Fn  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )
20 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  C_  ( ( S `  I ) `  X
) )
21 eqid 2283 . . . . . . . . . . . 12  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
226, 7, 8, 21hbtlem1 27327 . . . . . . . . . . 11  |-  ( ( R  e. LNoeR  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  =  { d  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) } )
231, 4, 5, 22syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( ( S `  I ) `  X
)  =  { d  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  d  =  ( (coe1 `  b ) `  X
) ) } )
2417rnmpt 4925 . . . . . . . . . . 11  |-  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { d  |  E. b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X ) }
25 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( c  =  b  ->  (
( deg1  `
 R ) `  c )  =  ( ( deg1  `  R ) `  b ) )
2625breq1d 4033 . . . . . . . . . . . . 13  |-  ( c  =  b  ->  (
( ( deg1  `  R ) `  c )  <_  X  <->  ( ( deg1  `  R ) `  b )  <_  X
) )
2726rexrab 2929 . . . . . . . . . . . 12  |-  ( E. b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) )
2827abbii 2395 . . . . . . . . . . 11  |-  { d  |  E. b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X ) }  =  { d  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) }
2924, 28eqtri 2303 . . . . . . . . . 10  |-  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { d  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  d  =  ( (coe1 `  b ) `  X
) ) }
3023, 29syl6eqr 2333 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  I ) `  X
)  =  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) )
3130adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
( S `  I
) `  X )  =  ran  ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
3220, 31sseqtrd 3214 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  C_ 
ran  ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
33 simprr 733 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  e.  Fin )
34 fipreima 7161 . . . . . . 7  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  Fn  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  /\  a  C_  ran  ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  /\  a  e.  Fin )  ->  E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )
3519, 32, 33, 34syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )
36 elfpw 7157 . . . . . . . . . 10  |-  ( k  e.  ( ~P {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin )  <->  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )
37 ssrab2 3258 . . . . . . . . . . . . . . . . 17  |-  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  C_  I
38 sstr2 3186 . . . . . . . . . . . . . . . . 17  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  ( { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  C_  I  ->  k  C_  I ) )
3937, 38mpi 16 . . . . . . . . . . . . . . . 16  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  k  C_  I )
4039adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  C_  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )  ->  k  C_  I )
41 vex 2791 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
4241elpw 3631 . . . . . . . . . . . . . . 15  |-  ( k  e.  ~P I  <->  k  C_  I )
4340, 42sylibr 203 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  C_  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )  ->  k  e.  ~P I )
4443adantrr 697 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  ~P I
)
45 simprr 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  Fin )
46 elin 3358 . . . . . . . . . . . . 13  |-  ( k  e.  ( ~P I  i^i  Fin )  <->  ( k  e.  ~P I  /\  k  e.  Fin ) )
4744, 45, 46sylanbrc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  ( ~P I  i^i  Fin )
)
483adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  R  e.  Ring )
496ply1rng 16326 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Ring  ->  P  e. 
Ring )
503, 49syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  Ring )
5150adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  P  e.  Ring )
52 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  { c  e.  I  |  (
( deg1  `
 R ) `  c )  <_  X } )
5352, 37syl6ss 3191 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  I )
54 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  P )  =  (
Base `  P )
5554, 7lidlss 15961 . . . . . . . . . . . . . . . . . 18  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
564, 55syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  C_  ( Base `  P ) )
5756adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  I  C_  ( Base `  P
) )
5853, 57sstrd 3189 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  ( Base `  P ) )
59 hbtlem6.n . . . . . . . . . . . . . . . 16  |-  N  =  (RSpan `  P )
6059, 54, 7rspcl 15974 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Ring  /\  k  C_  ( Base `  P
) )  ->  ( N `  k )  e.  U )
6151, 58, 60syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( N `  k
)  e.  U )
625adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  X  e.  NN0 )
636, 7, 8, 9hbtlem2 27328 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  ( N `  k )  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  ( N `  k )
) `  X )  e.  (LIdeal `  R )
)
6448, 61, 62, 63syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  e.  (LIdeal `  R
) )
65 df-ima 4702 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  ran  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )
6659, 54rspssid 15975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Ring  /\  k  C_  ( Base `  P
) )  ->  k  C_  ( N `  k
) )
6751, 58, 66syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  ( N `  k ) )
68 ssrab 3251 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  <->  ( k  C_  I  /\  A. c  e.  k  ( ( deg1  `  R ) `  c )  <_  X
) )
6968simprbi 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  A. c  e.  k  ( ( deg1  `  R ) `  c )  <_  X
)
7069ad2antrl 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  A. c  e.  k 
( ( deg1  `  R ) `  c )  <_  X
)
71 ssrab 3251 . . . . . . . . . . . . . . . . . . . 20  |-  ( k 
C_  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  <->  ( k  C_  ( N `  k )  /\  A. c  e.  k  (
( deg1  `
 R ) `  c )  <_  X
) )
7267, 70, 71sylanbrc 645 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }
)
73 resmpt 5000 . . . . . . . . . . . . . . . . . . 19  |-  ( k 
C_  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  ( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
7472, 73syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
75 resmpt 5000 . . . . . . . . . . . . . . . . . . 19  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
7675ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
7774, 76eqtr4d 2318 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k ) )
78 resss 4979 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
7978a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  C_  ( b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
8077, 79eqsstr3d 3213 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  C_  ( b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
81 rnss 4907 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  ->  ran  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ran  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) )
8280, 81syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  ran  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  C_  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
8365, 82syl5eqss 3222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
846, 7, 8, 21hbtlem1 27327 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  ( N `  k )  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  ( N `  k )
) `  X )  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) } )
8548, 61, 62, 84syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R
) `  b )  <_  X  /\  e  =  ( (coe1 `  b ) `  X ) ) } )
86 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  =  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
8786rnmpt 4925 . . . . . . . . . . . . . . . 16  |-  ran  (
b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { e  |  E. b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X ) }
8826rexrab 2929 . . . . . . . . . . . . . . . . 17  |-  ( E. b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X )  <->  E. b  e.  ( N `  k
) ( ( ( deg1  `  R ) `  b
)  <_  X  /\  e  =  ( (coe1 `  b ) `  X
) ) )
8988abbii 2395 . . . . . . . . . . . . . . . 16  |-  { e  |  E. b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X ) }  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) }
9087, 89eqtri 2303 . . . . . . . . . . . . . . 15  |-  ran  (
b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { e  |  E. b  e.  ( N `  k
) ( ( ( deg1  `  R ) `  b
)  <_  X  /\  e  =  ( (coe1 `  b ) `  X
) ) }
9185, 90syl6eqr 2333 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  =  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
9283, 91sseqtr4d 3215 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
9312, 9rspssp 15978 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
( S `  ( N `  k )
) `  X )  e.  (LIdeal `  R )  /\  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ( ( S `  ( N `  k ) ) `  X ) )  -> 
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )
9448, 64, 92, 93syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )
9547, 94jca 518 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
96 fveq2 5525 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
(RSpan `  R ) `  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
) )  =  ( (RSpan `  R ) `  a ) )
9796sseq1d 3205 . . . . . . . . . . . 12  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X )  <->  ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
9897anbi2d 684 . . . . . . . . . . 11  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )  <->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
9995, 98syl5ibcom 211 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
10036, 99sylan2b 461 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  i^i  Fin ) )  -> 
( ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
101100expimpd 586 . . . . . . . 8  |-  ( ph  ->  ( ( k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin )  /\  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  =  a )  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
102101adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
( k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  i^i  Fin )  /\  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )  -> 
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) ) )
103102reximdv2 2652 . . . . . 6  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  ( E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  E. k  e.  ( ~P I  i^i  Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
10435, 103mpd 14 . . . . 5  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
10515, 104sylan2b 461 . . . 4  |-  ( (
ph  /\  a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) )  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
106 sseq1 3199 . . . . 5  |-  ( ( ( S `  I
) `  X )  =  ( (RSpan `  R ) `  a
)  ->  ( (
( S `  I
) `  X )  C_  ( ( S `  ( N `  k ) ) `  X )  <-> 
( (RSpan `  R
) `  a )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
107106rexbidv 2564 . . . 4  |-  ( ( ( S `  I
) `  X )  =  ( (RSpan `  R ) `  a
)  ->  ( E. k  e.  ( ~P I  i^i  Fin ) ( ( S `  I
) `  X )  C_  ( ( S `  ( N `  k ) ) `  X )  <->  E. k  e.  ( ~P I  i^i  Fin )
( (RSpan `  R
) `  a )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
108105, 107syl5ibrcom 213 . . 3  |-  ( (
ph  /\  a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) )  ->  (
( ( S `  I ) `  X
)  =  ( (RSpan `  R ) `  a
)  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( ( S `  I ) `
 X )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
109108rexlimdva 2667 . 2  |-  ( ph  ->  ( E. a  e.  ( ~P ( ( S `  I ) `
 X )  i^i 
Fin ) ( ( S `  I ) `
 X )  =  ( (RSpan `  R
) `  a )  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
) )
11014, 109mpd 14 1  |-  ( ph  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077   ran crn 4690    |` cres 4691   "cima 4692    Fn wfn 5250   ` cfv 5255   Fincfn 6863    <_ cle 8868   NN0cn0 9965   Basecbs 13148   Ringcrg 15337  LIdealclidl 15923  RSpancrsp 15924  Poly1cpl1 16252  coe1cco1 16255   deg1 cdg1 19440  LNoeRclnr 27313  ldgIdlSeqcldgis 27325
This theorem is referenced by:  hbt  27334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-ascl 16055  df-psr 16098  df-mvr 16099  df-mpl 16100  df-opsr 16106  df-psr1 16257  df-vr1 16258  df-ply1 16259  df-coe1 16262  df-cnfld 16378  df-mdeg 19441  df-deg1 19442  df-lfig 27166  df-lnm 27174  df-lnr 27314  df-ldgis 27326
  Copyright terms: Public domain W3C validator