Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem7 Structured version   Unicode version

Theorem hbtlem7 27344
Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem7.t  |-  T  =  (LIdeal `  R )
Assertion
Ref Expression
hbtlem7  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( S `  I ) : NN0 --> T )

Proof of Theorem hbtlem7
Dummy variables  i 
j  x  y  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 449 . . . . . . . . 9  |-  ( ( ( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) )  -> 
y  =  ( (coe1 `  j ) `  x
) )
21reximi 2819 . . . . . . . 8  |-  ( E. j  e.  I  ( ( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) )  ->  E. j  e.  I 
y  =  ( (coe1 `  j ) `  x
) )
32ss2abi 3401 . . . . . . 7  |-  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  C_  { y  |  E. j  e.  I  y  =  ( (coe1 `  j ) `  x ) }
4 abrexexg 6013 . . . . . . 7  |-  ( I  e.  U  ->  { y  |  E. j  e.  I  y  =  ( (coe1 `  j ) `  x ) }  e.  _V )
5 ssexg 4378 . . . . . . 7  |-  ( ( { y  |  E. j  e.  I  (
( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) } 
C_  { y  |  E. j  e.  I 
y  =  ( (coe1 `  j ) `  x
) }  /\  {
y  |  E. j  e.  I  y  =  ( (coe1 `  j ) `  x ) }  e.  _V )  ->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  e.  _V )
63, 4, 5sylancr 646 . . . . . 6  |-  ( I  e.  U  ->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  e.  _V )
76ralrimivw 2796 . . . . 5  |-  ( I  e.  U  ->  A. x  e.  NN0  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) }  e.  _V )
87adantl 454 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  A. x  e.  NN0  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) }  e.  _V )
9 eqid 2442 . . . . 5  |-  ( x  e.  NN0  |->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } )
109fnmpt 5600 . . . 4  |-  ( A. x  e.  NN0  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  e.  _V  ->  ( x  e. 
NN0  |->  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } )  Fn  NN0 )
118, 10syl 16 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  (
x  e.  NN0  |->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } )  Fn  NN0 )
12 hbtlem.s . . . . . . 7  |-  S  =  (ldgIdlSeq `  R )
13 elex 2970 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
_V )
14 fveq2 5757 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
15 hbtlem.p . . . . . . . . . . . . 13  |-  P  =  (Poly1 `  R )
1614, 15syl6eqr 2492 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
1716fveq2d 5761 . . . . . . . . . . 11  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
18 hbtlem.u . . . . . . . . . . 11  |-  U  =  (LIdeal `  P )
1917, 18syl6eqr 2492 . . . . . . . . . 10  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
20 fveq2 5757 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
2120fveq1d 5759 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  j )  =  ( ( deg1  `  R ) `  j ) )
2221breq1d 4247 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  j )  <_  x  <->  ( ( deg1  `  R ) `  j )  <_  x
) )
2322anbi1d 687 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
( ( ( deg1  `  r
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) )  <->  ( (
( deg1  `
 R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) ) )
2423rexbidv 2732 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( E. j  e.  i 
( ( ( deg1  `  r
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) )  <->  E. j  e.  i  ( (
( deg1  `
 R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) ) )
2524abbidv 2556 . . . . . . . . . . 11  |-  ( r  =  R  ->  { y  |  E. j  e.  i  ( ( ( deg1  `  r ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  =  { y  |  E. j  e.  i  (
( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) } )
2625mpteq2dv 4321 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  r ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } ) )
2719, 26mpteq12dv 4312 . . . . . . . . 9  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  r ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) ) )
28 df-ldgis 27341 . . . . . . . . 9  |- ldgIdlSeq  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  r ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) ) )
29 fvex 5771 . . . . . . . . . . 11  |-  (LIdeal `  P )  e.  _V
3018, 29eqeltri 2512 . . . . . . . . . 10  |-  U  e. 
_V
3130mptex 5995 . . . . . . . . 9  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) )  e.  _V
3227, 28, 31fvmpt 5835 . . . . . . . 8  |-  ( R  e.  _V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) ) )
3313, 32syl 16 . . . . . . 7  |-  ( R  e.  Ring  ->  (ldgIdlSeq `  R
)  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) ) )
3412, 33syl5eq 2486 . . . . . 6  |-  ( R  e.  Ring  ->  S  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  (
( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) } ) ) )
3534fveq1d 5759 . . . . 5  |-  ( R  e.  Ring  ->  ( S `
 I )  =  ( ( i  e.  U  |->  ( x  e. 
NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } ) ) `  I
) )
36 rexeq 2911 . . . . . . . 8  |-  ( i  =  I  ->  ( E. j  e.  i 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) )  <->  E. j  e.  I  ( (
( deg1  `
 R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) ) )
3736abbidv 2556 . . . . . . 7  |-  ( i  =  I  ->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) }  =  { y  |  E. j  e.  I  (
( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) } )
3837mpteq2dv 4321 . . . . . 6  |-  ( i  =  I  ->  (
x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } ) )
39 eqid 2442 . . . . . 6  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) )
40 nn0ex 10258 . . . . . . 7  |-  NN0  e.  _V
4140mptex 5995 . . . . . 6  |-  ( x  e.  NN0  |->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } )  e.  _V
4238, 39, 41fvmpt 5835 . . . . 5  |-  ( I  e.  U  ->  (
( i  e.  U  |->  ( x  e.  NN0  |->  { y  |  E. j  e.  i  (
( ( deg1  `  R ) `  j )  <_  x  /\  y  =  (
(coe1 `  j ) `  x ) ) } ) ) `  I
)  =  ( x  e.  NN0  |->  { y  |  E. j  e.  I  ( ( ( deg1  `  R ) `  j
)  <_  x  /\  y  =  ( (coe1 `  j ) `  x
) ) } ) )
4335, 42sylan9eq 2494 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( S `  I )  =  ( x  e. 
NN0  |->  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } ) )
4443fneq1d 5565 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  (
( S `  I
)  Fn  NN0  <->  ( x  e.  NN0  |->  { y  |  E. j  e.  I 
( ( ( deg1  `  R
) `  j )  <_  x  /\  y  =  ( (coe1 `  j ) `  x ) ) } )  Fn  NN0 )
)
4511, 44mpbird 225 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( S `  I )  Fn  NN0 )
46 hbtlem7.t . . . . 5  |-  T  =  (LIdeal `  R )
4715, 18, 12, 46hbtlem2 27343 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  x  e.  NN0 )  ->  (
( S `  I
) `  x )  e.  T )
48473expa 1154 . . 3  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  NN0 )  ->  ( ( S `
 I ) `  x )  e.  T
)
4948ralrimiva 2795 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  A. x  e.  NN0  ( ( S `
 I ) `  x )  e.  T
)
50 ffnfv 5923 . 2  |-  ( ( S `  I ) : NN0 --> T  <->  ( ( S `  I )  Fn  NN0  /\  A. x  e.  NN0  ( ( S `
 I ) `  x )  e.  T
) )
5145, 49, 50sylanbrc 647 1  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( S `  I ) : NN0 --> T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   {cab 2428   A.wral 2711   E.wrex 2712   _Vcvv 2962    C_ wss 3306   class class class wbr 4237    e. cmpt 4291    Fn wfn 5478   -->wf 5479   ` cfv 5483    <_ cle 9152   NN0cn0 10252   Ringcrg 15691  LIdealclidl 16273  Poly1cpl1 16602  coe1cco1 16605   deg1 cdg1 20008  ldgIdlSeqcldgis 27340
This theorem is referenced by:  hbt  27349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-ofr 6335  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-map 7049  df-pm 7050  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-fz 11075  df-fzo 11167  df-seq 11355  df-hash 11650  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-0g 13758  df-gsum 13759  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-mhm 14769  df-submnd 14770  df-grp 14843  df-minusg 14844  df-sbg 14845  df-mulg 14846  df-subg 14972  df-ghm 15035  df-cntz 15147  df-cmn 15445  df-abl 15446  df-mgp 15680  df-rng 15694  df-cring 15695  df-ur 15696  df-subrg 15897  df-lmod 15983  df-lss 16040  df-sra 16275  df-rgmod 16276  df-lidl 16277  df-ascl 16405  df-psr 16448  df-mvr 16449  df-mpl 16450  df-opsr 16456  df-psr1 16607  df-vr1 16608  df-ply1 16609  df-coe1 16612  df-cnfld 16735  df-mdeg 20009  df-deg1 20010  df-ldgis 27341
  Copyright terms: Public domain W3C validator