Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfreq Structured version   Unicode version

Theorem hbxfreq 2540
 Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1578 for equivalence version. (Contributed by NM, 21-Aug-2007.)
Hypotheses
Ref Expression
hbxfr.1
hbxfr.2
Assertion
Ref Expression
hbxfreq

Proof of Theorem hbxfreq
StepHypRef Expression
1 hbxfr.1 . . 3
21eleq2i 2501 . 2
3 hbxfr.2 . 2
42, 3hbxfrbi 1578 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550   wceq 1653   wcel 1726 This theorem is referenced by:  bnj1317  29194  bnj1441  29213  bnj1309  29392 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-cleq 2430  df-clel 2433
 Copyright terms: Public domain W3C validator