Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6b Unicode version

Theorem hdmap1l6b 31375
Description: Lemmma for hdmap1l6 31385. (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6b.y  |-  ( ph  ->  Y  =  .0.  )
hdmap1l6b.z  |-  ( ph  ->  Z  e.  V )
hdmap1l6b.ne  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
Assertion
Ref Expression
hdmap1l6b  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )

Proof of Theorem hdmap1l6b
StepHypRef Expression
1 hdmap1l6.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
3 hdmap1l6.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 31155 . . . 4  |-  ( ph  ->  C  e.  LMod )
5 lmodgrp 15634 . . . 4  |-  ( C  e.  LMod  ->  C  e. 
Grp )
64, 5syl 15 . . 3  |-  ( ph  ->  C  e.  Grp )
7 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
8 hdmap1l6.v . . . 4  |-  V  =  ( Base `  U
)
9 hdmap1l6c.o . . . 4  |-  .0.  =  ( 0g `  U )
10 hdmap1l6.n . . . 4  |-  N  =  ( LSpan `  U )
11 hdmap1l6.d . . . 4  |-  D  =  ( Base `  C
)
12 hdmap1l6.l . . . 4  |-  L  =  ( LSpan `  C )
13 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
14 hdmap1l6.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
15 hdmap1l6.f . . . 4  |-  ( ph  ->  F  e.  D )
16 hdmap1l6.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
171, 7, 3dvhlvec 30672 . . . . . 6  |-  ( ph  ->  U  e.  LVec )
18 hdmap1l6cl.x . . . . . . 7  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 eldifi 3298 . . . . . . 7  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
2018, 19syl 15 . . . . . 6  |-  ( ph  ->  X  e.  V )
21 hdmap1l6b.y . . . . . . 7  |-  ( ph  ->  Y  =  .0.  )
221, 7, 3dvhlmod 30673 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
238, 9lmod0vcl 15659 . . . . . . . 8  |-  ( U  e.  LMod  ->  .0.  e.  V )
2422, 23syl 15 . . . . . . 7  |-  ( ph  ->  .0.  e.  V )
2521, 24eqeltrd 2357 . . . . . 6  |-  ( ph  ->  Y  e.  V )
26 hdmap1l6b.z . . . . . 6  |-  ( ph  ->  Z  e.  V )
27 hdmap1l6b.ne . . . . . 6  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
288, 10, 17, 20, 25, 26, 27lspindpi 15885 . . . . 5  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
2928simprd 449 . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
301, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 29, 18, 26hdmap1cl 31368 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
31 hdmap1l6.a . . . 4  |-  .+b  =  ( +g  `  C )
32 hdmap1l6.q . . . 4  |-  Q  =  ( 0g `  C
)
3311, 31, 32grplid 14512 . . 3  |-  ( ( C  e.  Grp  /\  ( I `  <. X ,  F ,  Z >. )  e.  D )  ->  ( Q  .+b  ( I `  <. X ,  F ,  Z >. ) )  =  ( I `  <. X ,  F ,  Z >. ) )
346, 30, 33syl2anc 642 . 2  |-  ( ph  ->  ( Q  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( I `
 <. X ,  F ,  Z >. ) )
35 oteq3 3807 . . . . . 6  |-  ( Y  =  .0.  ->  <. X ,  F ,  Y >.  = 
<. X ,  F ,  .0.  >. )
3621, 35syl 15 . . . . 5  |-  ( ph  -> 
<. X ,  F ,  Y >.  =  <. X ,  F ,  .0.  >. )
3736fveq2d 5529 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( I `
 <. X ,  F ,  .0.  >. ) )
381, 7, 8, 9, 2, 11, 32, 14, 3, 15, 20hdmap1val0 31363 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  .0.  >.
)  =  Q )
3937, 38eqtrd 2315 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  Q )
4039oveq1d 5873 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( Q 
.+b  ( I `  <. X ,  F ,  Z >. ) ) )
4121oveq1d 5873 . . . . 5  |-  ( ph  ->  ( Y  .+  Z
)  =  (  .0.  .+  Z ) )
42 lmodgrp 15634 . . . . . . 7  |-  ( U  e.  LMod  ->  U  e. 
Grp )
4322, 42syl 15 . . . . . 6  |-  ( ph  ->  U  e.  Grp )
44 hdmap1l6.p . . . . . . 7  |-  .+  =  ( +g  `  U )
458, 44, 9grplid 14512 . . . . . 6  |-  ( ( U  e.  Grp  /\  Z  e.  V )  ->  (  .0.  .+  Z
)  =  Z )
4643, 26, 45syl2anc 642 . . . . 5  |-  ( ph  ->  (  .0.  .+  Z
)  =  Z )
4741, 46eqtrd 2315 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =  Z )
48 oteq3 3807 . . . 4  |-  ( ( Y  .+  Z )  =  Z  ->  <. X ,  F ,  ( Y  .+  Z ) >.  =  <. X ,  F ,  Z >. )
4947, 48syl 15 . . 3  |-  ( ph  -> 
<. X ,  F , 
( Y  .+  Z
) >.  =  <. X ,  F ,  Z >. )
5049fveq2d 5529 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
I `  <. X ,  F ,  Z >. ) )
5134, 40, 503eqtr4rd 2326 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149   {csn 3640   {cpr 3641   <.cotp 3644   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   -gcsg 14365   LModclmod 15627   LSpanclspn 15728   HLchlt 28913   LHypclh 29546   DVecHcdvh 30641  LCDualclcd 31149  mapdcmpd 31187  HDMap1chdma1 31355
This theorem is referenced by:  hdmap1l6k  31384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-oppg 14819  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lsatoms 28539  df-lshyp 28540  df-lcv 28582  df-lfl 28621  df-lkr 28649  df-ldual 28687  df-oposet 28739  df-ol 28741  df-oml 28742  df-covers 28829  df-ats 28830  df-atl 28861  df-cvlat 28885  df-hlat 28914  df-llines 29060  df-lplanes 29061  df-lvols 29062  df-lines 29063  df-psubsp 29065  df-pmap 29066  df-padd 29358  df-lhyp 29550  df-laut 29551  df-ldil 29666  df-ltrn 29667  df-trl 29721  df-tgrp 30305  df-tendo 30317  df-edring 30319  df-dveca 30565  df-disoa 30592  df-dvech 30642  df-dib 30702  df-dic 30736  df-dih 30792  df-doch 30911  df-djh 30958  df-lcdual 31150  df-mapd 31188  df-hdmap1 31357
  Copyright terms: Public domain W3C validator