Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1neglem1N Structured version   Unicode version

Theorem hdmap1neglem1N 32700
Description: Lemma for hdmapneg 32721. TODO: Not used; delete. (Contributed by NM, 23-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1neglem1.h  |-  H  =  ( LHyp `  K
)
hdmap1neglem1.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1neglem1.v  |-  V  =  ( Base `  U
)
hdmap1neglem1.r  |-  R  =  ( inv g `  U )
hdmap1neglem1.o  |-  .0.  =  ( 0g `  U )
hdmap1neglem1.n  |-  N  =  ( LSpan `  U )
hdmap1neglem1.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1neglem1.d  |-  D  =  ( Base `  C
)
hdmap1neglem1.s  |-  S  =  ( inv g `  C )
hdmap1neglem1.l  |-  L  =  ( LSpan `  C )
hdmap1neglem1.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1neglem1.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1neglem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1neglem1.f  |-  ( ph  ->  F  e.  D )
hdmap1neglem1.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1neglem1.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
hdmap1neglem1.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1neglem1.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1neglem1.e  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
Assertion
Ref Expression
hdmap1neglem1N  |-  ( ph  ->  ( I `  <. ( R `  X ) ,  ( S `  F ) ,  ( R `  Y )
>. )  =  ( S `  G )
)

Proof of Theorem hdmap1neglem1N
StepHypRef Expression
1 hdmap1neglem1.e . . . . 5  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
2 hdmap1neglem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
3 hdmap1neglem1.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
4 hdmap1neglem1.v . . . . . 6  |-  V  =  ( Base `  U
)
5 eqid 2438 . . . . . 6  |-  ( -g `  U )  =  (
-g `  U )
6 hdmap1neglem1.o . . . . . 6  |-  .0.  =  ( 0g `  U )
7 hdmap1neglem1.n . . . . . 6  |-  N  =  ( LSpan `  U )
8 hdmap1neglem1.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
9 hdmap1neglem1.d . . . . . 6  |-  D  =  ( Base `  C
)
10 eqid 2438 . . . . . 6  |-  ( -g `  C )  =  (
-g `  C )
11 hdmap1neglem1.l . . . . . 6  |-  L  =  ( LSpan `  C )
12 hdmap1neglem1.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
13 hdmap1neglem1.i . . . . . 6  |-  I  =  ( (HDMap1 `  K
) `  W )
14 hdmap1neglem1.k . . . . . 6  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 hdmap1neglem1.x . . . . . 6  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
16 hdmap1neglem1.f . . . . . 6  |-  ( ph  ->  F  e.  D )
17 hdmap1neglem1.y . . . . . 6  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
18 hdmap1neglem1.mn . . . . . . . 8  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
19 hdmap1neglem1.ne . . . . . . . 8  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
2017eldifad 3334 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
212, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 19, 15, 20hdmap1cl 32677 . . . . . . 7  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
221, 21eqeltrrd 2513 . . . . . 6  |-  ( ph  ->  G  e.  D )
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 19, 18hdmap1eq 32674 . . . . 5  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X (
-g `  U ) Y ) } ) )  =  ( L `
 { ( F ( -g `  C
) G ) } ) ) ) )
241, 23mpbid 203 . . . 4  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X (
-g `  U ) Y ) } ) )  =  ( L `
 { ( F ( -g `  C
) G ) } ) ) )
2524simpld 447 . . 3  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) )
262, 3, 14dvhlmod 31982 . . . . 5  |-  ( ph  ->  U  e.  LMod )
27 hdmap1neglem1.r . . . . . 6  |-  R  =  ( inv g `  U )
284, 27, 7lspsnneg 16087 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { ( R `  Y ) } )  =  ( N `  { Y } ) )
2926, 20, 28syl2anc 644 . . . 4  |-  ( ph  ->  ( N `  {
( R `  Y
) } )  =  ( N `  { Y } ) )
3029fveq2d 5735 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( R `  Y ) } ) )  =  ( M `  ( N `  { Y } ) ) )
312, 8, 14lcdlmod 32464 . . . 4  |-  ( ph  ->  C  e.  LMod )
32 hdmap1neglem1.s . . . . 5  |-  S  =  ( inv g `  C )
339, 32, 11lspsnneg 16087 . . . 4  |-  ( ( C  e.  LMod  /\  G  e.  D )  ->  ( L `  { ( S `  G ) } )  =  ( L `  { G } ) )
3431, 22, 33syl2anc 644 . . 3  |-  ( ph  ->  ( L `  {
( S `  G
) } )  =  ( L `  { G } ) )
3525, 30, 343eqtr4d 2480 . 2  |-  ( ph  ->  ( M `  ( N `  { ( R `  Y ) } ) )  =  ( L `  {
( S `  G
) } ) )
3624simprd 451 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( X ( -g `  U
) Y ) } ) )  =  ( L `  { ( F ( -g `  C
) G ) } ) )
37 lmodabl 15996 . . . . . . . . 9  |-  ( U  e.  LMod  ->  U  e. 
Abel )
3826, 37syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  Abel )
3915eldifad 3334 . . . . . . . 8  |-  ( ph  ->  X  e.  V )
404, 5, 27, 38, 39, 20ablsub2inv 15440 . . . . . . 7  |-  ( ph  ->  ( ( R `  X ) ( -g `  U ) ( R `
 Y ) )  =  ( Y (
-g `  U ) X ) )
4140sneqd 3829 . . . . . 6  |-  ( ph  ->  { ( ( R `
 X ) (
-g `  U )
( R `  Y
) ) }  =  { ( Y (
-g `  U ) X ) } )
4241fveq2d 5735 . . . . 5  |-  ( ph  ->  ( N `  {
( ( R `  X ) ( -g `  U ) ( R `
 Y ) ) } )  =  ( N `  { ( Y ( -g `  U
) X ) } ) )
434, 5, 7, 26, 20, 39lspsnsub 16088 . . . . 5  |-  ( ph  ->  ( N `  {
( Y ( -g `  U ) X ) } )  =  ( N `  { ( X ( -g `  U
) Y ) } ) )
4442, 43eqtrd 2470 . . . 4  |-  ( ph  ->  ( N `  {
( ( R `  X ) ( -g `  U ) ( R `
 Y ) ) } )  =  ( N `  { ( X ( -g `  U
) Y ) } ) )
4544fveq2d 5735 . . 3  |-  ( ph  ->  ( M `  ( N `  { (
( R `  X
) ( -g `  U
) ( R `  Y ) ) } ) )  =  ( M `  ( N `
 { ( X ( -g `  U
) Y ) } ) ) )
46 lmodabl 15996 . . . . . . . 8  |-  ( C  e.  LMod  ->  C  e. 
Abel )
4731, 46syl 16 . . . . . . 7  |-  ( ph  ->  C  e.  Abel )
489, 10, 32, 47, 16, 22ablsub2inv 15440 . . . . . 6  |-  ( ph  ->  ( ( S `  F ) ( -g `  C ) ( S `
 G ) )  =  ( G (
-g `  C ) F ) )
4948sneqd 3829 . . . . 5  |-  ( ph  ->  { ( ( S `
 F ) (
-g `  C )
( S `  G
) ) }  =  { ( G (
-g `  C ) F ) } )
5049fveq2d 5735 . . . 4  |-  ( ph  ->  ( L `  {
( ( S `  F ) ( -g `  C ) ( S `
 G ) ) } )  =  ( L `  { ( G ( -g `  C
) F ) } ) )
519, 10, 11, 31, 22, 16lspsnsub 16088 . . . 4  |-  ( ph  ->  ( L `  {
( G ( -g `  C ) F ) } )  =  ( L `  { ( F ( -g `  C
) G ) } ) )
5250, 51eqtrd 2470 . . 3  |-  ( ph  ->  ( L `  {
( ( S `  F ) ( -g `  C ) ( S `
 G ) ) } )  =  ( L `  { ( F ( -g `  C
) G ) } ) )
5336, 45, 523eqtr4d 2480 . 2  |-  ( ph  ->  ( M `  ( N `  { (
( R `  X
) ( -g `  U
) ( R `  Y ) ) } ) )  =  ( L `  { ( ( S `  F
) ( -g `  C
) ( S `  G ) ) } ) )
54 lmodgrp 15962 . . . . 5  |-  ( U  e.  LMod  ->  U  e. 
Grp )
5526, 54syl 16 . . . 4  |-  ( ph  ->  U  e.  Grp )
564, 6, 27grpinvnzcl 14868 . . . 4  |-  ( ( U  e.  Grp  /\  X  e.  ( V  \  {  .0.  } ) )  ->  ( R `  X )  e.  ( V  \  {  .0.  } ) )
5755, 15, 56syl2anc 644 . . 3  |-  ( ph  ->  ( R `  X
)  e.  ( V 
\  {  .0.  }
) )
589, 32lmodvnegcl 15990 . . . 4  |-  ( ( C  e.  LMod  /\  F  e.  D )  ->  ( S `  F )  e.  D )
5931, 16, 58syl2anc 644 . . 3  |-  ( ph  ->  ( S `  F
)  e.  D )
604, 6, 27grpinvnzcl 14868 . . . 4  |-  ( ( U  e.  Grp  /\  Y  e.  ( V  \  {  .0.  } ) )  ->  ( R `  Y )  e.  ( V  \  {  .0.  } ) )
6155, 17, 60syl2anc 644 . . 3  |-  ( ph  ->  ( R `  Y
)  e.  ( V 
\  {  .0.  }
) )
629, 32lmodvnegcl 15990 . . . 4  |-  ( ( C  e.  LMod  /\  G  e.  D )  ->  ( S `  G )  e.  D )
6331, 22, 62syl2anc 644 . . 3  |-  ( ph  ->  ( S `  G
)  e.  D )
644, 27, 7lspsnneg 16087 . . . . 5  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( R `  X ) } )  =  ( N `  { X } ) )
6526, 39, 64syl2anc 644 . . . 4  |-  ( ph  ->  ( N `  {
( R `  X
) } )  =  ( N `  { X } ) )
6619, 65, 293netr4d 2630 . . 3  |-  ( ph  ->  ( N `  {
( R `  X
) } )  =/=  ( N `  {
( R `  Y
) } ) )
6765fveq2d 5735 . . . 4  |-  ( ph  ->  ( M `  ( N `  { ( R `  X ) } ) )  =  ( M `  ( N `  { X } ) ) )
689, 32, 11lspsnneg 16087 . . . . 5  |-  ( ( C  e.  LMod  /\  F  e.  D )  ->  ( L `  { ( S `  F ) } )  =  ( L `  { F } ) )
6931, 16, 68syl2anc 644 . . . 4  |-  ( ph  ->  ( L `  {
( S `  F
) } )  =  ( L `  { F } ) )
7018, 67, 693eqtr4d 2480 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( R `  X ) } ) )  =  ( L `  {
( S `  F
) } ) )
712, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 57, 59, 61, 63, 66, 70hdmap1eq 32674 . 2  |-  ( ph  ->  ( ( I `  <. ( R `  X
) ,  ( S `
 F ) ,  ( R `  Y
) >. )  =  ( S `  G )  <-> 
( ( M `  ( N `  { ( R `  Y ) } ) )  =  ( L `  {
( S `  G
) } )  /\  ( M `  ( N `
 { ( ( R `  X ) ( -g `  U
) ( R `  Y ) ) } ) )  =  ( L `  { ( ( S `  F
) ( -g `  C
) ( S `  G ) ) } ) ) ) )
7235, 53, 71mpbir2and 890 1  |-  ( ph  ->  ( I `  <. ( R `  X ) ,  ( S `  F ) ,  ( R `  Y )
>. )  =  ( S `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601    \ cdif 3319   {csn 3816   <.cotp 3820   ` cfv 5457  (class class class)co 6084   Basecbs 13474   0gc0g 13728   Grpcgrp 14690   inv gcminusg 14691   -gcsg 14693   Abelcabel 15418   LModclmod 15955   LSpanclspn 16052   HLchlt 30222   LHypclh 30855   DVecHcdvh 31950  LCDualclcd 32458  mapdcmpd 32496  HDMap1chdma1 32664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-ot 3826  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-tpos 6482  df-undef 6546  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-0g 13732  df-mre 13816  df-mrc 13817  df-acs 13819  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-mnd 14695  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-cntz 15121  df-oppg 15147  df-lsm 15275  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-dvr 15793  df-drng 15842  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lvec 16180  df-lsatoms 29848  df-lshyp 29849  df-lcv 29891  df-lfl 29930  df-lkr 29958  df-ldual 29996  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-llines 30369  df-lplanes 30370  df-lvols 30371  df-lines 30372  df-psubsp 30374  df-pmap 30375  df-padd 30667  df-lhyp 30859  df-laut 30860  df-ldil 30975  df-ltrn 30976  df-trl 31030  df-tgrp 31614  df-tendo 31626  df-edring 31628  df-dveca 31874  df-disoa 31901  df-dvech 31951  df-dib 32011  df-dic 32045  df-dih 32101  df-doch 32220  df-djh 32267  df-lcdual 32459  df-mapd 32497  df-hdmap1 32666
  Copyright terms: Public domain W3C validator