Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapffval Unicode version

Theorem hdmapffval 32324
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypothesis
Ref Expression
hdmapval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hdmapffval  |-  ( K  e.  X  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
Distinct variable groups:    w, H    e, a, i, t, u, v, w, y, z, K
Allowed substitution hints:    H( y, z, v, u, t, e, i, a)    X( y, z, w, v, u, t, e, i, a)

Proof of Theorem hdmapffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2932 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5695 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hdmapval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2462 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5695 . . . . . . . . 9  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
65reseq2d 5113 . . . . . . . 8  |-  ( k  =  K  ->  (  _I  |`  ( Base `  k
) )  =  (  _I  |`  ( Base `  K ) ) )
7 fveq2 5695 . . . . . . . . . 10  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
87fveq1d 5697 . . . . . . . . 9  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
98reseq2d 5113 . . . . . . . 8  |-  ( k  =  K  ->  (  _I  |`  ( ( LTrn `  k ) `  w
) )  =  (  _I  |`  ( ( LTrn `  K ) `  w ) ) )
106, 9opeq12d 3960 . . . . . . 7  |-  ( k  =  K  ->  <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.
)
11 dfsbcq 3131 . . . . . . 7  |-  ( <.
(  _I  |`  ( Base `  k ) ) ,  (  _I  |`  (
( LTrn `  k ) `  w ) ) >.  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  ->  ( [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
1210, 11syl 16 . . . . . 6  |-  ( k  =  K  ->  ( [. <. (  _I  |`  ( Base `  k ) ) ,  (  _I  |`  (
( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
13 fveq2 5695 . . . . . . . . . 10  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1413fveq1d 5697 . . . . . . . . 9  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
15 dfsbcq 3131 . . . . . . . . 9  |-  ( ( ( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w )  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
1614, 15syl 16 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
17 fveq2 5695 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (HDMap1 `  k )  =  (HDMap1 `  K ) )
1817fveq1d 5697 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
(HDMap1 `  k ) `  w )  =  ( (HDMap1 `  K ) `  w ) )
19 dfsbcq 3131 . . . . . . . . . . . 12  |-  ( ( (HDMap1 `  k ) `  w )  =  ( (HDMap1 `  K ) `  w )  ->  ( [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
2018, 19syl 16 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
21 fveq2 5695 . . . . . . . . . . . . . . . . 17  |-  ( k  =  K  ->  (LCDual `  k )  =  (LCDual `  K ) )
2221fveq1d 5697 . . . . . . . . . . . . . . . 16  |-  ( k  =  K  ->  (
(LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w ) )
2322fveq2d 5699 . . . . . . . . . . . . . . 15  |-  ( k  =  K  ->  ( Base `  ( (LCDual `  k ) `  w
) )  =  (
Base `  ( (LCDual `  K ) `  w
) ) )
24 fveq2 5695 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  K  ->  (HVMap `  k )  =  (HVMap `  K ) )
2524fveq1d 5697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  K  ->  (
(HVMap `  k ) `  w )  =  ( (HVMap `  K ) `  w ) )
2625fveq1d 5697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  K  ->  (
( (HVMap `  k
) `  w ) `  e )  =  ( ( (HVMap `  K
) `  w ) `  e ) )
2726oteq2d 3965 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  K  ->  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >.  =  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. )
2827fveq2d 5699 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  K  ->  (
i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. )  =  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) )
2928oteq2d 3965 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  K  ->  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.  =  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
3029fveq2d 5699 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  K  ->  (
i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )  =  ( i `  <. z ,  ( i `
 <. e ,  ( ( (HVMap `  K
) `  w ) `  e ) ,  z
>. ) ,  t >.
) )
3130eqeq2d 2423 . . . . . . . . . . . . . . . . 17  |-  ( k  =  K  ->  (
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )  <->  y  =  ( i `  <. z ,  ( i `
 <. e ,  ( ( (HVMap `  K
) `  w ) `  e ) ,  z
>. ) ,  t >.
) ) )
3231imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( k  =  K  ->  (
( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
)  <->  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
) ) )
3332ralbidv 2694 . . . . . . . . . . . . . . 15  |-  ( k  =  K  ->  ( A. z  e.  v 
( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
)  <->  A. z  e.  v  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
) ) )
3423, 33riotaeqbidv 6519 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( iota_ y  e.  ( Base `  ( (LCDual `  k
) `  w )
) A. z  e.  v  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
) )  =  (
iota_ y  e.  ( Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )
3534mpteq2dv 4264 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (
t  e.  v  |->  (
iota_ y  e.  ( Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  =  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) )
3635eleq2d 2479 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <-> 
a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3736sbcbidv 3183 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3820, 37bitrd 245 . . . . . . . . . 10  |-  ( k  =  K  ->  ( [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3938sbcbidv 3183 . . . . . . . . 9  |-  ( k  =  K  ->  ( [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
4039sbcbidv 3183 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  K ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
4116, 40bitrd 245 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  K ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
4241sbcbidv 3183 . . . . . 6  |-  ( k  =  K  ->  ( [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
4312, 42bitrd 245 . . . . 5  |-  ( k  =  K  ->  ( [. <. (  _I  |`  ( Base `  k ) ) ,  (  _I  |`  (
( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
4443abbidv 2526 . . . 4  |-  ( k  =  K  ->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) }  =  { a  |  [. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )
454, 44mpteq12dv 4255 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
46 df-hdmap 32290 . . 3  |- HDMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
47 fvex 5709 . . . . 5  |-  ( LHyp `  K )  e.  _V
483, 47eqeltri 2482 . . . 4  |-  H  e. 
_V
4948mptex 5933 . . 3  |-  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )  e.  _V
5045, 46, 49fvmpt 5773 . 2  |-  ( K  e.  _V  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
511, 50syl 16 1  |-  ( K  e.  X  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {cab 2398   A.wral 2674   _Vcvv 2924   [.wsbc 3129    u. cun 3286   {csn 3782   <.cop 3785   <.cotp 3786    e. cmpt 4234    _I cid 4461    |` cres 4847   ` cfv 5421   iota_crio 6509   Basecbs 13432   LSpanclspn 16010   LHypclh 30478   LTrncltrn 30595   DVecHcdvh 31573  LCDualclcd 32081  HVMapchvm 32251  HDMap1chdma1 32287  HDMapchdma 32288
This theorem is referenced by:  hdmapfval  32325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-ot 3792  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6516  df-hdmap 32290
  Copyright terms: Public domain W3C validator