Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Unicode version

Theorem heibor 25957
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 25946 and heiborlem1 25947 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor
Dummy variables  t  n  y  k  r  u  m  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3  |-  J  =  ( MetOpen `  D )
21heibor1 25946 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
3 cmetmet 18712 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
43adantr 451 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  D  e.  ( Met `  X ) )
5 metxmet 17899 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
61mopntop 17986 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
73, 5, 63syl 18 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  J  e.  Top )
87adantr 451 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Top )
9 istotbnd 25905 . . . . . . . . . . . . 13  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) ) )
109simprbi 450 . . . . . . . . . . . 12  |-  ( D  e.  ( TotBnd `  X
)  ->  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) )
11 2nn 9877 . . . . . . . . . . . . . . 15  |-  2  e.  NN
12 nnexpcl 11116 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
1311, 12mpan 651 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  NN )
1413nnrpd 10389 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  RR+ )
1514rpreccld 10400 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( 1  /  ( 2 ^ n ) )  e.  RR+ )
16 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
1716eqeq2d 2294 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
v  =  ( y ( ball `  D
) r )  <->  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1817rexbidv 2564 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1918ralbidv 2563 . . . . . . . . . . . . . . 15  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2019anbi2d 684 . . . . . . . . . . . . . 14  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) )  <->  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2120rexbidv 2564 . . . . . . . . . . . . 13  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) r ) )  <->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
2221rspccva 2883 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r ) )  /\  ( 1  /  (
2 ^ n ) )  e.  RR+ )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
2310, 15, 22syl2an 463 . . . . . . . . . . 11  |-  ( ( D  e.  ( TotBnd `  X )  /\  n  e.  NN0 )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2423expcom 424 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( D  e.  ( TotBnd `  X
)  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2524adantl 452 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
26 oveq1 5865 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( m `  v )  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
2726eqeq2d 2294 . . . . . . . . . . . . . . 15  |-  ( y  =  ( m `  v )  ->  (
v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2827ac6sfi 7101 . . . . . . . . . . . . . 14  |-  ( ( u  e.  Fin  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )
2928adantrl 696 . . . . . . . . . . . . 13  |-  ( ( u  e.  Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
3029adantl 452 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
31 simp3l 983 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  m : u --> X )
32 frn 5395 . . . . . . . . . . . . . . . . . . . 20  |-  ( m : u --> X  ->  ran  m  C_  X )
3331, 32syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  X
)
341mopnuni 17987 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
353, 5, 343syl 18 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( CMet `  X
)  ->  X  =  U. J )
3635adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  X  =  U. J )
37363ad2ant1 976 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U. J )
3833, 37sseqtrd 3214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  U. J
)
39 fvex 5539 . . . . . . . . . . . . . . . . . . . . 21  |-  ( MetOpen `  D )  e.  _V
401, 39eqeltri 2353 . . . . . . . . . . . . . . . . . . . 20  |-  J  e. 
_V
4140uniex 4516 . . . . . . . . . . . . . . . . . . 19  |-  U. J  e.  _V
4241elpw2 4175 . . . . . . . . . . . . . . . . . 18  |-  ( ran  m  e.  ~P U. J 
<->  ran  m  C_  U. J
)
4338, 42sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ~P U. J )
44 simp2l 981 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  u  e.  Fin )
45 ffn 5389 . . . . . . . . . . . . . . . . . . . 20  |-  ( m : u --> X  ->  m  Fn  u )
46 dffn4 5457 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  Fn  u  <->  m :
u -onto-> ran  m )
4745, 46sylib 188 . . . . . . . . . . . . . . . . . . 19  |-  ( m : u --> X  ->  m : u -onto-> ran  m
)
48 fofi 7142 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  Fin  /\  m : u -onto-> ran  m
)  ->  ran  m  e. 
Fin )
4947, 48sylan2 460 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  Fin  /\  m : u --> X )  ->  ran  m  e.  Fin )
5044, 31, 49syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  Fin )
51 elin 3358 . . . . . . . . . . . . . . . . 17  |-  ( ran  m  e.  ( ~P
U. J  i^i  Fin ) 
<->  ( ran  m  e. 
~P U. J  /\  ran  m  e.  Fin )
)
5243, 50, 51sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ( ~P U. J  i^i  Fin ) )
5326eleq2d 2350 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( m `  v )  ->  (
r  e.  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
5453rexrn 5667 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  Fn  u  ->  ( E. y  e.  ran  m  r  e.  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
55 eliun 3909 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. y  e.  ran  m  r  e.  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
56 eliun 3909 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  U_ v  e.  u  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5754, 55, 563bitr4g 279 . . . . . . . . . . . . . . . . . . 19  |-  ( m  Fn  u  ->  (
r  e.  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
5857eqrdv 2281 . . . . . . . . . . . . . . . . . 18  |-  ( m  Fn  u  ->  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  = 
U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5931, 45, 583syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
60 simp3r 984 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  A. v  e.  u  v  =  ( (
m `  v )
( ball `  D )
( 1  /  (
2 ^ n ) ) ) )
61 uniiun 3955 . . . . . . . . . . . . . . . . . . 19  |-  U. u  =  U_ v  e.  u  v
62 iuneq2 3921 . . . . . . . . . . . . . . . . . . 19  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U_ v  e.  u  v  =  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6361, 62syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U. u  =  U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
6460, 63syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
65 simp2r 982 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  X )
6659, 64, 653eqtr2rd 2322 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
67 iuneq1 3918 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  ran  m  ->  U_ y  e.  t 
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  =  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6867eqeq2d 2294 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ran  m  -> 
( X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  X  =  U_ y  e.  ran  m
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
6968rspcev 2884 . . . . . . . . . . . . . . . 16  |-  ( ( ran  m  e.  ( ~P U. J  i^i  Fin )  /\  X  = 
U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
7052, 66, 69syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
71703expia 1153 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X ) )  -> 
( ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7271adantrrr 705 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7372exlimdv 1664 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7430, 73mpd 14 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
7574expr 598 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  u  e.  Fin )  ->  ( ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7675rexlimdva 2667 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7725, 76syld 40 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
7877ralrimdva 2633 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. n  e.  NN0  E. t  e.  ( ~P
U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7941pwex 4193 . . . . . . . . 9  |-  ~P U. J  e.  _V
8079inex1 4155 . . . . . . . 8  |-  ( ~P
U. J  i^i  Fin )  e.  _V
81 nn0ennn 11041 . . . . . . . . 9  |-  NN0  ~~  NN
82 nnenom 11042 . . . . . . . . 9  |-  NN  ~~  om
8381, 82entri 6915 . . . . . . . 8  |-  NN0  ~~  om
84 iuneq1 3918 . . . . . . . . 9  |-  ( t  =  ( m `  n )  ->  U_ y  e.  t  ( y
( ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
8584eqeq2d 2294 . . . . . . . 8  |-  ( t  =  ( m `  n )  ->  ( X  =  U_ y  e.  t  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8680, 83, 85axcc4 8065 . . . . . . 7  |-  ( A. n  e.  NN0  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8778, 86syl6 29 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
88 elpwi 3633 . . . . . . . . . 10  |-  ( r  e.  ~P J  -> 
r  C_  J )
89 eqid 2283 . . . . . . . . . . . 12  |-  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v }  =  {
u  |  -.  E. v  e.  ( ~P r  i^i  Fin ) u 
C_  U. v }
90 eqid 2283 . . . . . . . . . . . 12  |-  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }  =  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }
91 eqid 2283 . . . . . . . . . . . 12  |-  ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) )  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
92 simpl 443 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  D  e.  ( CMet `  X )
)
9335pweqd 3630 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( CMet `  X
)  ->  ~P X  =  ~P U. J )
9493ineq1d 3369 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P X  i^i  Fin )  =  ( ~P U. J  i^i  Fin ) )
95 feq3 5377 . . . . . . . . . . . . . . 15  |-  ( ( ~P X  i^i  Fin )  =  ( ~P U. J  i^i  Fin )  ->  ( m : NN0 --> ( ~P X  i^i  Fin ) 
<->  m : NN0 --> ( ~P
U. J  i^i  Fin ) ) )
9694, 95syl 15 . . . . . . . . . . . . . 14  |-  ( D  e.  ( CMet `  X
)  ->  ( m : NN0 --> ( ~P X  i^i  Fin )  <->  m : NN0
--> ( ~P U. J  i^i  Fin ) ) )
9796biimpar 471 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ( ~P X  i^i  Fin ) )
9897adantrr 697 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  m : NN0
--> ( ~P X  i^i  Fin ) )
99 oveq1 5865 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
10099cbviunv 3941 . . . . . . . . . . . . . . . . . 18  |-  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n )
101 id 19 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m : NN0 --> ( ~P
U. J  i^i  Fin )  ->  m : NN0 --> ( ~P U. J  i^i  Fin ) )
102 inss1 3389 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ~P
U. J  i^i  Fin )  C_  ~P U. J
103102, 93syl5sseqr 3227 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P U. J  i^i  Fin )  C_ 
~P X )
104 fss 5397 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  ( ~P U. J  i^i  Fin )  C_  ~P X )  ->  m : NN0 --> ~P X )
105101, 103, 104syl2anr 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ~P X )
106 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m : NN0 --> ~P X  /\  n  e.  NN0 )  ->  ( m `  n )  e.  ~P X )
107105, 106sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  e.  ~P X )
108 elpwi 3633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m `  n )  e.  ~P X  -> 
( m `  n
)  C_  X )
109107, 108syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  C_  X )
110109sselda 3180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
y  e.  X )
111 simplr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  ->  n  e.  NN0 )
112 oveq1 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
113 oveq2 5866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  n  ->  (
2 ^ m )  =  ( 2 ^ n ) )
114113oveq2d 5874 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
1  /  ( 2 ^ m ) )  =  ( 1  / 
( 2 ^ n
) ) )
115114oveq2d 5874 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
116 ovex 5883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  e. 
_V
117112, 115, 91, 116ovmpt2 5983 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  X  /\  n  e.  NN0 )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
118110, 111, 117syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
119118iuneq2dv 3926 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ y  e.  ( m `  n
) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
120100, 119syl5eq 2327 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
121120eqeq2d 2294 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
122121biimprd 214 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ y  e.  ( m `  n
) ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n ) ) )
123122ralimdva 2621 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  ( A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n ) ) )
124123impr 602 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
125 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
m `  n )  =  ( m `  k ) )
126125iuneq1d 3928 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
127 simpl 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  ->  n  =  k )
128127oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  -> 
( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
129128iuneq2dv 3926 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
130126, 129eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
131130eqeq2d 2294 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ t  e.  ( m `
 k ) ( t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k ) ) )
132131cbvralv 2764 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN0  X  = 
U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  <->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) k ) )
133124, 132sylib 188 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
1341, 89, 90, 91, 92, 98, 133heiborlem10 25956 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  /\  ( r 
C_  J  /\  U. J  =  U. r
) )  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v )
135134exp32 588 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  C_  J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
13688, 135syl5 28 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  e.  ~P J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
137136ralrimiv 2625 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
138137ex 423 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
139138exlimdv 1664 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( E. m ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
14087, 139syld 40 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
141140imp 418 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
142 eqid 2283 . . . . 5  |-  U. J  =  U. J
143142iscmp 17115 . . . 4  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
1448, 141, 143sylanbrc 645 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Comp )
1454, 144jca 518 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  ( D  e.  ( Met `  X
)  /\  J  e.  Comp ) )
1462, 145impbii 180 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   U_ciun 3905   {copab 4076   omcom 4656   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Fincfn 6863   1c1 8738    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   RR+crp 10354   ^cexp 11104   * Metcxmt 16369   Metcme 16370   ballcbl 16371   MetOpencmopn 16372   Topctop 16631   Compccmp 17113   CMetcms 18680   TotBndctotbnd 25902
This theorem is referenced by:  rrnheibor  25973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-icc 10663  df-fz 10783  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lm 16959  df-haus 17043  df-cmp 17114  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-cfil 18681  df-cau 18682  df-cmet 18683  df-totbnd 25904
  Copyright terms: Public domain W3C validator