Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Unicode version

Theorem heiborlem10 26647
Description: Lemma for heibor 26648. The last remaining piece of the proof is to find an element  C such that  C G 0, i.e. 
C is an element of  ( F ` 
0 ) that has no finite subcover, which is true by heiborlem1 26638, since  ( F `  0 ) is a finite cover of  X, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of  U that covers  X, i.e.  X is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
Assertion
Ref Expression
heiborlem10  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Distinct variable groups:    y, n, u, F    m, n, u, v, y, z, D    B, n, u, v, y   
m, J, n, u, v, y, z    U, n, u, v, y, z   
m, X, n, u, v, y, z    n, K, y, z    ph, v
Allowed substitution hints:    ph( y, z, u, m, n)    B( z, m)    U( m)    F( z, v, m)    G( y,
z, v, u, m, n)    K( v, u, m)

Proof of Theorem heiborlem10
Dummy variables  t  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
2 0nn0 9996 . . . . . . . 8  |-  0  e.  NN0
3 inss2 3403 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
Fin
4 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  ( ~P X  i^i  Fin ) )
53, 4sseldi 3191 . . . . . . . 8  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  Fin )
61, 2, 5sylancl 643 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  Fin )
7 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
8 fveq2 5541 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( F `  n )  =  ( F ` 
0 ) )
9 oveq2 5882 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
y B n )  =  ( y B 0 ) )
108, 9iuneq12d 3945 . . . . . . . . . . 11  |-  ( n  =  0  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
1110eqeq2d 2307 . . . . . . . . . 10  |-  ( n  =  0  ->  ( X  =  U_ y  e.  ( F `  n
) ( y B n )  <->  X  =  U_ y  e.  ( F `
 0 ) ( y B 0 ) ) )
1211rspccva 2896 . . . . . . . . 9  |-  ( ( A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n )  /\  0  e.  NN0 )  ->  X  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
137, 2, 12sylancl 643 . . . . . . . 8  |-  ( ph  ->  X  =  U_ y  e.  ( F `  0
) ( y B 0 ) )
14 eqimss 3243 . . . . . . . 8  |-  ( X  =  U_ y  e.  ( F `  0
) ( y B 0 )  ->  X  C_ 
U_ y  e.  ( F `  0 ) ( y B 0 ) )
1513, 14syl 15 . . . . . . 7  |-  ( ph  ->  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )
16 heibor.1 . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
17 heibor.3 . . . . . . . . . 10  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
18 ovex 5899 . . . . . . . . . 10  |-  ( y B 0 )  e. 
_V
1916, 17, 18heiborlem1 26638 . . . . . . . . 9  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. y  e.  ( F `  0
) ( y B 0 )  e.  K
)
20 oveq1 5881 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y B 0 )  =  ( x B 0 ) )
2120eleq1d 2362 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y B 0 )  e.  K  <->  ( x B 0 )  e.  K ) )
2221cbvrexv 2778 . . . . . . . . 9  |-  ( E. y  e.  ( F `
 0 ) ( y B 0 )  e.  K  <->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
2319, 22sylib 188 . . . . . . . 8  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
24233expia 1153 . . . . . . 7  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )  -> 
( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
256, 15, 24syl2anc 642 . . . . . 6  |-  ( ph  ->  ( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
2625adantr 451 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
) )
27 heibor.4 . . . . . . . . . 10  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
28 vex 2804 . . . . . . . . . 10  |-  x  e. 
_V
29 c0ex 8848 . . . . . . . . . 10  |-  0  e.  _V
3016, 17, 27, 28, 29heiborlem2 26639 . . . . . . . . 9  |-  ( x G 0  <->  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )
31 heibor.5 . . . . . . . . . . . 12  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
32 heibor.6 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3316, 17, 27, 31, 32, 1, 7heiborlem3 26640 . . . . . . . . . . 11  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3433ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  E. g A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3532ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  D  e.  ( CMet `  X
) )
361ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  F : NN0 --> ( ~P X  i^i  Fin ) )
377ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n ) ( y B n ) )
38 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
39 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
g `  x )  =  ( g `  t ) )
40 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( 2nd `  x )  =  ( 2nd `  t
) )
4140oveq1d 5889 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( 2nd `  x
)  +  1 )  =  ( ( 2nd `  t )  +  1 ) )
4239, 41breq12d 4052 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  <->  ( g `  t ) G ( ( 2nd `  t
)  +  1 ) ) )
43 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( B `  x )  =  ( B `  t ) )
4439, 41oveq12d 5892 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) )  =  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )
4543, 44ineq12d 3384 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( B `  x
)  i^i  ( (
g `  x ) B ( ( 2nd `  x )  +  1 ) ) )  =  ( ( B `  t )  i^i  (
( g `  t
) B ( ( 2nd `  t )  +  1 ) ) ) )
4645eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K  <->  ( ( B `  t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4742, 46anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  <->  ( ( g `
 t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) ) )
4847cbvralv 2777 . . . . . . . . . . . . . 14  |-  ( A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K )  <->  A. t  e.  G  ( ( g `  t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4938, 48sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. t  e.  G  ( (
g `  t ) G ( ( 2nd `  t )  +  1 )  /\  ( ( B `  t )  i^i  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
50 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  x G 0 )
51 eqeq1 2302 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  =  0  <->  m  =  0 ) )
52 oveq1 5881 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  -  1 )  =  ( m  - 
1 ) )
5351, 52ifbieq2d 3598 . . . . . . . . . . . . . . 15  |-  ( g  =  m  ->  if ( g  =  0 ,  x ,  ( g  -  1 ) )  =  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
5453cbvmptv 4127 . . . . . . . . . . . . . 14  |-  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
55 seqeq3 11067 . . . . . . . . . . . . . 14  |-  ( ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )  ->  seq  0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq  0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) ) )
5654, 55ax-mp 8 . . . . . . . . . . . . 13  |-  seq  0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq  0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) )
57 eqid 2296 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  <. (  seq  0 ( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) ) `  n ) ,  ( 3  /  ( 2 ^ n ) )
>. )  =  (
n  e.  NN  |->  <.
(  seq  0 ( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) ) `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
58 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U  C_  J )
59 cmetmet 18728 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
60 metxmet 17915 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
6132, 59, 603syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  ( * Met `  X ) )
6216mopnuni 18003 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
6361, 62syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  =  U. J
)
6463adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  X  =  U. J )
65 simprr 733 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. J  =  U. U )
6664, 65eqtr2d 2329 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. U  =  X )
6766adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U. U  =  X )
6816, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 67heiborlem9 26646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  -.  X  e.  K )
6968expr 598 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
7069exlimdv 1626 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( E. g A. x  e.  G  ( ( g `
 x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
7134, 70mpd 14 . . . . . . . . 9  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  -.  X  e.  K )
7230, 71sylan2br 462 . . . . . . . 8  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )  ->  -.  X  e.  K
)
73723exp2 1169 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( 0  e. 
NN0  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) ) )
742, 73mpi 16 . . . . . 6  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) )
7574rexlimdv 2679 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. x  e.  ( F `  0
) ( x B 0 )  e.  K  ->  -.  X  e.  K
) )
7626, 75syld 40 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  -.  X  e.  K ) )
7776pm2.01d 161 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  -.  X  e.  K )
78 elfvdm 5570 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
79 sseq1 3212 . . . . . . . . 9  |-  ( u  =  X  ->  (
u  C_  U. v  <->  X 
C_  U. v ) )
8079rexbidv 2577 . . . . . . . 8  |-  ( u  =  X  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v ) )
8180notbid 285 . . . . . . 7  |-  ( u  =  X  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8281, 17elab2g 2929 . . . . . 6  |-  ( X  e.  dom  CMet  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8332, 78, 823syl 18 . . . . 5  |-  ( ph  ->  ( X  e.  K  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8483adantr 451 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8584con2bid 319 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  -.  X  e.  K ) )
8677, 85mpbird 223 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
)
8763ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  X  =  U. J )
8887sseq1d 3218 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  C_  U. v ) )
89 inss1 3402 . . . . . . . . 9  |-  ( ~P U  i^i  Fin )  C_ 
~P U
9089sseli 3189 . . . . . . . 8  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  e.  ~P U )
91 elpwi 3646 . . . . . . . 8  |-  ( v  e.  ~P U  -> 
v  C_  U )
9290, 91syl 15 . . . . . . 7  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  C_  U )
93 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U  C_  J
)
94 sstr 3200 . . . . . . . 8  |-  ( ( v  C_  U  /\  U  C_  J )  -> 
v  C_  J )
95 uniss 3864 . . . . . . . 8  |-  ( v 
C_  J  ->  U. v  C_ 
U. J )
9694, 95syl 15 . . . . . . 7  |-  ( ( v  C_  U  /\  U  C_  J )  ->  U. v  C_  U. J
)
9792, 93, 96syl2anr 464 . . . . . 6  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  U. v  C_ 
U. J )
9897biantrud 493 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) ) )
99 eqss 3207 . . . . 5  |-  ( U. J  =  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) )
10098, 99syl6bbr 254 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  U. J  =  U. v
) )
10188, 100bitrd 244 . . 3  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  = 
U. v ) )
102101rexbidva 2573 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v ) )
10386, 102mpbid 201 1  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   ifcif 3578   ~Pcpw 3638   <.cop 3656   U.cuni 3843   U_ciun 3921   class class class wbr 4039   {copab 4092    e. cmpt 4093   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   2ndc2nd 6137   Fincfn 6879   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   NN0cn0 9981    seq cseq 11062   ^cexp 11120   * Metcxmt 16385   Metcme 16386   ballcbl 16387   MetOpencmopn 16388   CMetcms 18696
This theorem is referenced by:  heibor  26648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-icc 10679  df-fl 10941  df-seq 11063  df-exp 11121  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lm 16975  df-haus 17059  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-cfil 18697  df-cau 18698  df-cmet 18699
  Copyright terms: Public domain W3C validator