Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Unicode version

Theorem heiborlem7 26541
Description: Lemma for heibor 26545. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
heibor.9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
heibor.10  |-  ( ph  ->  C G 0 )
heibor.11  |-  S  =  seq  0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
heibor.12  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
Assertion
Ref Expression
heiborlem7  |-  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r
Distinct variable groups:    x, n, y, k, r, u, F   
k, G, x    ph, k,
r, x    k, m, v, z, D, n, r, u, x, y    k, M, m, r, u, x, y, z    T, m, n, x, y, z    B, n, u, v, y   
k, J, m, n, r, u, v, x, y, z    U, n, u, v, x, y, z    S, k, m, n, u, v, x, y, z    k, X, m, n, r, u, v, x, y, z    C, m, n, u, v, y   
n, K, x, y, z    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    B( z, k, m, r)    C( x, z, k, r)    S( r)    T( v, u, k, r)    U( k, m, r)    F( z, v, m)    G( y,
z, v, u, m, n, r)    K( v, u, k, m, r)    M( v, n)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 9817 . . . . . . 7  |-  3  e.  RR
2 3pos 9830 . . . . . . 7  |-  0  <  3
31, 2elrpii 10357 . . . . . 6  |-  3  e.  RR+
4 rpdivcl 10376 . . . . . 6  |-  ( ( r  e.  RR+  /\  3  e.  RR+ )  ->  (
r  /  3 )  e.  RR+ )
53, 4mpan2 652 . . . . 5  |-  ( r  e.  RR+  ->  ( r  /  3 )  e.  RR+ )
6 2re 9815 . . . . . 6  |-  2  e.  RR
7 1lt2 9886 . . . . . 6  |-  1  <  2
8 expnlbnd 11231 . . . . . 6  |-  ( ( ( r  /  3
)  e.  RR+  /\  2  e.  RR  /\  1  <  2 )  ->  E. k  e.  NN  ( 1  / 
( 2 ^ k
) )  <  (
r  /  3 ) )
96, 7, 8mp3an23 1269 . . . . 5  |-  ( ( r  /  3 )  e.  RR+  ->  E. k  e.  NN  ( 1  / 
( 2 ^ k
) )  <  (
r  /  3 ) )
105, 9syl 15 . . . 4  |-  ( r  e.  RR+  ->  E. k  e.  NN  ( 1  / 
( 2 ^ k
) )  <  (
r  /  3 ) )
11 2nn 9877 . . . . . . . . . . 11  |-  2  e.  NN
12 nnnn0 9972 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
13 nnexpcl 11116 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
1411, 12, 13sylancr 644 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2 ^ k )  e.  NN )
1514nnrpd 10389 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2 ^ k )  e.  RR+ )
16 rpcn 10362 . . . . . . . . . 10  |-  ( ( 2 ^ k )  e.  RR+  ->  ( 2 ^ k )  e.  CC )
17 rpne0 10369 . . . . . . . . . 10  |-  ( ( 2 ^ k )  e.  RR+  ->  ( 2 ^ k )  =/=  0 )
18 3cn 9818 . . . . . . . . . . 11  |-  3  e.  CC
19 divrec 9440 . . . . . . . . . . 11  |-  ( ( 3  e.  CC  /\  ( 2 ^ k
)  e.  CC  /\  ( 2 ^ k
)  =/=  0 )  ->  ( 3  / 
( 2 ^ k
) )  =  ( 3  x.  ( 1  /  ( 2 ^ k ) ) ) )
2018, 19mp3an1 1264 . . . . . . . . . 10  |-  ( ( ( 2 ^ k
)  e.  CC  /\  ( 2 ^ k
)  =/=  0 )  ->  ( 3  / 
( 2 ^ k
) )  =  ( 3  x.  ( 1  /  ( 2 ^ k ) ) ) )
2116, 17, 20syl2anc 642 . . . . . . . . 9  |-  ( ( 2 ^ k )  e.  RR+  ->  ( 3  /  ( 2 ^ k ) )  =  ( 3  x.  (
1  /  ( 2 ^ k ) ) ) )
2215, 21syl 15 . . . . . . . 8  |-  ( k  e.  NN  ->  (
3  /  ( 2 ^ k ) )  =  ( 3  x.  ( 1  /  (
2 ^ k ) ) ) )
2322adantl 452 . . . . . . 7  |-  ( ( r  e.  RR+  /\  k  e.  NN )  ->  (
3  /  ( 2 ^ k ) )  =  ( 3  x.  ( 1  /  (
2 ^ k ) ) ) )
2423breq1d 4033 . . . . . 6  |-  ( ( r  e.  RR+  /\  k  e.  NN )  ->  (
( 3  /  (
2 ^ k ) )  <  r  <->  ( 3  x.  ( 1  / 
( 2 ^ k
) ) )  < 
r ) )
2514nnrecred 9791 . . . . . . 7  |-  ( k  e.  NN  ->  (
1  /  ( 2 ^ k ) )  e.  RR )
26 rpre 10360 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
271, 2pm3.2i 441 . . . . . . . 8  |-  ( 3  e.  RR  /\  0  <  3 )
28 ltmuldiv2 9627 . . . . . . . 8  |-  ( ( ( 1  /  (
2 ^ k ) )  e.  RR  /\  r  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( 3  x.  ( 1  / 
( 2 ^ k
) ) )  < 
r  <->  ( 1  / 
( 2 ^ k
) )  <  (
r  /  3 ) ) )
2927, 28mp3an3 1266 . . . . . . 7  |-  ( ( ( 1  /  (
2 ^ k ) )  e.  RR  /\  r  e.  RR )  ->  ( ( 3  x.  ( 1  /  (
2 ^ k ) ) )  <  r  <->  ( 1  /  ( 2 ^ k ) )  <  ( r  / 
3 ) ) )
3025, 26, 29syl2anr 464 . . . . . 6  |-  ( ( r  e.  RR+  /\  k  e.  NN )  ->  (
( 3  x.  (
1  /  ( 2 ^ k ) ) )  <  r  <->  ( 1  /  ( 2 ^ k ) )  < 
( r  /  3
) ) )
3124, 30bitrd 244 . . . . 5  |-  ( ( r  e.  RR+  /\  k  e.  NN )  ->  (
( 3  /  (
2 ^ k ) )  <  r  <->  ( 1  /  ( 2 ^ k ) )  < 
( r  /  3
) ) )
3231rexbidva 2560 . . . 4  |-  ( r  e.  RR+  ->  ( E. k  e.  NN  (
3  /  ( 2 ^ k ) )  <  r  <->  E. k  e.  NN  ( 1  / 
( 2 ^ k
) )  <  (
r  /  3 ) ) )
3310, 32mpbird 223 . . 3  |-  ( r  e.  RR+  ->  E. k  e.  NN  ( 3  / 
( 2 ^ k
) )  <  r
)
34 fveq2 5525 . . . . . . . . 9  |-  ( n  =  k  ->  ( S `  n )  =  ( S `  k ) )
35 oveq2 5866 . . . . . . . . . 10  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
3635oveq2d 5874 . . . . . . . . 9  |-  ( n  =  k  ->  (
3  /  ( 2 ^ n ) )  =  ( 3  / 
( 2 ^ k
) ) )
3734, 36opeq12d 3804 . . . . . . . 8  |-  ( n  =  k  ->  <. ( S `  n ) ,  ( 3  / 
( 2 ^ n
) ) >.  =  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >. )
38 heibor.12 . . . . . . . 8  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
39 opex 4237 . . . . . . . 8  |-  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >.  e.  _V
4037, 38, 39fvmpt 5602 . . . . . . 7  |-  ( k  e.  NN  ->  ( M `  k )  =  <. ( S `  k ) ,  ( 3  /  ( 2 ^ k ) )
>. )
4140fveq2d 5529 . . . . . 6  |-  ( k  e.  NN  ->  ( 2nd `  ( M `  k ) )  =  ( 2nd `  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >. )
)
42 fvex 5539 . . . . . . 7  |-  ( S `
 k )  e. 
_V
43 ovex 5883 . . . . . . 7  |-  ( 3  /  ( 2 ^ k ) )  e. 
_V
4442, 43op2nd 6129 . . . . . 6  |-  ( 2nd `  <. ( S `  k ) ,  ( 3  /  ( 2 ^ k ) )
>. )  =  (
3  /  ( 2 ^ k ) )
4541, 44syl6eq 2331 . . . . 5  |-  ( k  e.  NN  ->  ( 2nd `  ( M `  k ) )  =  ( 3  /  (
2 ^ k ) ) )
4645breq1d 4033 . . . 4  |-  ( k  e.  NN  ->  (
( 2nd `  ( M `  k )
)  <  r  <->  ( 3  /  ( 2 ^ k ) )  < 
r ) )
4746rexbiia 2576 . . 3  |-  ( E. k  e.  NN  ( 2nd `  ( M `  k ) )  < 
r  <->  E. k  e.  NN  ( 3  /  (
2 ^ k ) )  <  r )
4833, 47sylibr 203 . 2  |-  ( r  e.  RR+  ->  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r )
4948rgen 2608 1  |-  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ifcif 3565   ~Pcpw 3625   <.cop 3643   U.cuni 3827   U_ciun 3905   class class class wbr 4023   {copab 4076    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   2ndc2nd 6121   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   3c3 9796   NN0cn0 9965   RR+crp 10354    seq cseq 11046   ^cexp 11104   ballcbl 16371   MetOpencmopn 16372   CMetcms 18680
This theorem is referenced by:  heiborlem8  26542  heiborlem9  26543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator