Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem8 Structured version   Unicode version

Theorem heiborlem8 26527
Description: Lemma for heibor 26530. The previous lemmas establish that the sequence  M is Cauchy, so using completeness we now consider the convergent point 
Y. By assumption,  U is an open cover, so  Y is an element of some  Z  e.  U, and some ball centered at  Y is contained in  Z. But the sequence contains arbitrarily small balls close to  Y, so some element  ball ( M `  n ) of the sequence is contained in  Z. And finally we arrive at a contradiction, because  { Z } is a finite subcover of  U that covers  ball ( M `  n ), yet  ball ( M `  n )  e.  K. For convenience, we write this contradiction as 
ph  ->  ps where  ph is all the accumulated hypotheses and  ps is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
heibor.9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
heibor.10  |-  ( ph  ->  C G 0 )
heibor.11  |-  S  =  seq  0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
heibor.12  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
heibor.13  |-  ( ph  ->  U  C_  J )
heibor.14  |-  Y  e. 
_V
heibor.15  |-  ( ph  ->  Y  e.  Z )
heibor.16  |-  ( ph  ->  Z  e.  U )
heibor.17  |-  ( ph  ->  ( 1st  o.  M
) ( ~~> t `  J ) Y )
Assertion
Ref Expression
heiborlem8  |-  ( ph  ->  ps )
Distinct variable groups:    x, n, y, u, F    x, G    ph, x    m, n, u, v, x, y, z, D    m, M, u, x, y, z    T, m, n, x, y, z    B, n, u, v, y   
m, J, n, u, v, x, y, z    U, n, u, v, x, y, z    ps, y,
z    S, m, n, u, v, x, y, z   
m, X, n, u, v, x, y, z    C, m, n, u, v, y    n, K, x, y, z    x, Y   
v, Z, x    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    ps( x, v, u, m, n)    B( z, m)    C( x, z)    T( v, u)    U( m)    F( z, v, m)    G( y, z, v, u, m, n)    K( v, u, m)    M( v, n)    Y( y, z, v, u, m, n)    Z( y, z, u, m, n)

Proof of Theorem heiborlem8
Dummy variables  t 
k  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . 4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 19239 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
3 metxmet 18364 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
41, 2, 33syl 19 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
5 heibor.13 . . . 4  |-  ( ph  ->  U  C_  J )
6 heibor.16 . . . 4  |-  ( ph  ->  Z  e.  U )
75, 6sseldd 3349 . . 3  |-  ( ph  ->  Z  e.  J )
8 heibor.15 . . 3  |-  ( ph  ->  Y  e.  Z )
9 heibor.1 . . . 4  |-  J  =  ( MetOpen `  D )
109mopni2 18523 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  Z  e.  J  /\  Y  e.  Z
)  ->  E. x  e.  RR+  ( Y (
ball `  D )
x )  C_  Z
)
114, 7, 8, 10syl3anc 1184 . 2  |-  ( ph  ->  E. x  e.  RR+  ( Y ( ball `  D
) x )  C_  Z )
12 rphalfcl 10636 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
13 breq2 4216 . . . . . . . 8  |-  ( r  =  ( x  / 
2 )  ->  (
( 2nd `  ( M `  k )
)  <  r  <->  ( 2nd `  ( M `  k
) )  <  (
x  /  2 ) ) )
1413rexbidv 2726 . . . . . . 7  |-  ( r  =  ( x  / 
2 )  ->  ( E. k  e.  NN  ( 2nd `  ( M `
 k ) )  <  r  <->  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  ( x  /  2 ) ) )
15 heibor.3 . . . . . . . 8  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
16 heibor.4 . . . . . . . 8  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
17 heibor.5 . . . . . . . 8  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
18 heibor.7 . . . . . . . 8  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
19 heibor.8 . . . . . . . 8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
20 heibor.9 . . . . . . . 8  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
21 heibor.10 . . . . . . . 8  |-  ( ph  ->  C G 0 )
22 heibor.11 . . . . . . . 8  |-  S  =  seq  0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
23 heibor.12 . . . . . . . 8  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
249, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem7 26526 . . . . . . 7  |-  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r
2514, 24vtoclri 3026 . . . . . 6  |-  ( ( x  /  2 )  e.  RR+  ->  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  ( x  /  2 ) )
2612, 25syl 16 . . . . 5  |-  ( x  e.  RR+  ->  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  ( x  /  2 ) )
2726adantl 453 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  ( x  /  2 ) )
28 nnnn0 10228 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  NN0 )
299, 15, 16, 17, 1, 18, 19, 20, 21, 22heiborlem4 26523 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( S `  k ) G k )
30 fvex 5742 . . . . . . . . . 10  |-  ( S `
 k )  e. 
_V
31 vex 2959 . . . . . . . . . 10  |-  k  e. 
_V
329, 15, 16, 30, 31heiborlem2 26521 . . . . . . . . 9  |-  ( ( S `  k ) G k  <->  ( k  e.  NN0  /\  ( S `
 k )  e.  ( F `  k
)  /\  ( ( S `  k ) B k )  e.  K ) )
3332simp3bi 974 . . . . . . . 8  |-  ( ( S `  k ) G k  ->  (
( S `  k
) B k )  e.  K )
3429, 33syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( S `  k ) B k )  e.  K )
3528, 34sylan2 461 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( S `  k ) B k )  e.  K )
3635ad2ant2r 728 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( S `
 k ) B k )  e.  K
)
374ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  D  e.  ( * Met `  X
) )
389, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem5 26524 . . . . . . . . . . . . 13  |-  ( ph  ->  M : NN --> ( X  X.  RR+ ) )
3938ffvelrnda 5870 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( M `
 k )  e.  ( X  X.  RR+ ) )
4039ad2ant2r 728 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( M `  k )  e.  ( X  X.  RR+ )
)
41 xp1st 6376 . . . . . . . . . . 11  |-  ( ( M `  k )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( M `  k
) )  e.  X
)
4240, 41syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1st `  ( M `  k )
)  e.  X )
43 2nn 10133 . . . . . . . . . . . . . . 15  |-  2  e.  NN
44 nnexpcl 11394 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
4543, 28, 44sylancr 645 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
2 ^ k )  e.  NN )
4645nnrpd 10647 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
2 ^ k )  e.  RR+ )
4746rpreccld 10658 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  ( 2 ^ k ) )  e.  RR+ )
4847ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1  / 
( 2 ^ k
) )  e.  RR+ )
4948rpxrd 10649 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1  / 
( 2 ^ k
) )  e.  RR* )
50 xp2nd 6377 . . . . . . . . . . . 12  |-  ( ( M `  k )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( M `  k
) )  e.  RR+ )
5140, 50syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 2nd `  ( M `  k )
)  e.  RR+ )
5251rpxrd 10649 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 2nd `  ( M `  k )
)  e.  RR* )
53 1re 9090 . . . . . . . . . . . . . . 15  |-  1  e.  RR
54 3re 10071 . . . . . . . . . . . . . . 15  |-  3  e.  RR
55 1lt3 10144 . . . . . . . . . . . . . . 15  |-  1  <  3
5653, 54, 55ltleii 9196 . . . . . . . . . . . . . 14  |-  1  <_  3
57 elrp 10614 . . . . . . . . . . . . . . 15  |-  ( ( 2 ^ k )  e.  RR+  <->  ( ( 2 ^ k )  e.  RR  /\  0  < 
( 2 ^ k
) ) )
58 lediv1 9875 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  (
( 2 ^ k
)  e.  RR  /\  0  <  ( 2 ^ k ) ) )  ->  ( 1  <_ 
3  <->  ( 1  / 
( 2 ^ k
) )  <_  (
3  /  ( 2 ^ k ) ) ) )
5953, 54, 58mp3an12 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( 2 ^ k
)  e.  RR  /\  0  <  ( 2 ^ k ) )  -> 
( 1  <_  3  <->  ( 1  /  ( 2 ^ k ) )  <_  ( 3  / 
( 2 ^ k
) ) ) )
6057, 59sylbi 188 . . . . . . . . . . . . . 14  |-  ( ( 2 ^ k )  e.  RR+  ->  ( 1  <_  3  <->  ( 1  /  ( 2 ^ k ) )  <_ 
( 3  /  (
2 ^ k ) ) ) )
6156, 60mpbii 203 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  RR+  ->  ( 1  /  ( 2 ^ k ) )  <_ 
( 3  /  (
2 ^ k ) ) )
6246, 61syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  ( 2 ^ k ) )  <_  ( 3  / 
( 2 ^ k
) ) )
6362ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1  / 
( 2 ^ k
) )  <_  (
3  /  ( 2 ^ k ) ) )
64 fveq2 5728 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  ( S `  n )  =  ( S `  k ) )
65 oveq2 6089 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
6665oveq2d 6097 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
3  /  ( 2 ^ n ) )  =  ( 3  / 
( 2 ^ k
) ) )
6764, 66opeq12d 3992 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  <. ( S `  n ) ,  ( 3  / 
( 2 ^ n
) ) >.  =  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >. )
68 opex 4427 . . . . . . . . . . . . . . 15  |-  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >.  e.  _V
6967, 23, 68fvmpt 5806 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( M `  k )  =  <. ( S `  k ) ,  ( 3  /  ( 2 ^ k ) )
>. )
7069fveq2d 5732 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( 2nd `  ( M `  k ) )  =  ( 2nd `  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >. )
)
71 ovex 6106 . . . . . . . . . . . . . 14  |-  ( 3  /  ( 2 ^ k ) )  e. 
_V
7230, 71op2nd 6356 . . . . . . . . . . . . 13  |-  ( 2nd `  <. ( S `  k ) ,  ( 3  /  ( 2 ^ k ) )
>. )  =  (
3  /  ( 2 ^ k ) )
7370, 72syl6eq 2484 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( 2nd `  ( M `  k ) )  =  ( 3  /  (
2 ^ k ) ) )
7473ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 2nd `  ( M `  k )
)  =  ( 3  /  ( 2 ^ k ) ) )
7563, 74breqtrrd 4238 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1  / 
( 2 ^ k
) )  <_  ( 2nd `  ( M `  k ) ) )
76 ssbl 18453 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( 1st `  ( M `  k
) )  e.  X
)  /\  ( (
1  /  ( 2 ^ k ) )  e.  RR*  /\  ( 2nd `  ( M `  k ) )  e. 
RR* )  /\  (
1  /  ( 2 ^ k ) )  <_  ( 2nd `  ( M `  k )
) )  ->  (
( 1st `  ( M `  k )
) ( ball `  D
) ( 1  / 
( 2 ^ k
) ) )  C_  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( 2nd `  ( M `  k )
) ) )
7737, 42, 49, 52, 75, 76syl221anc 1195 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 1  /  ( 2 ^ k ) ) ) 
C_  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 2nd `  ( M `  k
) ) ) )
7828ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  k  e.  NN0 )
79 oveq1 6088 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( M `  k )
)  ->  ( z
( ball `  D )
( 1  /  (
2 ^ m ) ) )  =  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) )
80 oveq2 6089 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
8180oveq2d 6097 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
1  /  ( 2 ^ m ) )  =  ( 1  / 
( 2 ^ k
) ) )
8281oveq2d 6097 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
( 1st `  ( M `  k )
) ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( 1  / 
( 2 ^ k
) ) ) )
83 ovex 6106 . . . . . . . . . . . 12  |-  ( ( 1st `  ( M `
 k ) ) ( ball `  D
) ( 1  / 
( 2 ^ k
) ) )  e. 
_V
8479, 82, 17, 83ovmpt2 6209 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( M `  k )
)  e.  X  /\  k  e.  NN0 )  -> 
( ( 1st `  ( M `  k )
) B k )  =  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 1  /  ( 2 ^ k ) ) ) )
8542, 78, 84syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) B k )  =  ( ( 1st `  ( M `
 k ) ) ( ball `  D
) ( 1  / 
( 2 ^ k
) ) ) )
8669fveq2d 5732 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( 1st `  ( M `  k ) )  =  ( 1st `  <. ( S `  k ) ,  ( 3  / 
( 2 ^ k
) ) >. )
)
8730, 71op1st 6355 . . . . . . . . . . . . 13  |-  ( 1st `  <. ( S `  k ) ,  ( 3  /  ( 2 ^ k ) )
>. )  =  ( S `  k )
8886, 87syl6eq 2484 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( 1st `  ( M `  k ) )  =  ( S `  k
) )
8988ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 1st `  ( M `  k )
)  =  ( S `
 k ) )
9089oveq1d 6096 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) B k )  =  ( ( S `  k ) B k ) )
9185, 90eqtr3d 2470 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 1  /  ( 2 ^ k ) ) )  =  ( ( S `
 k ) B k ) )
92 1st2nd2 6386 . . . . . . . . . . . 12  |-  ( ( M `  k )  e.  ( X  X.  RR+ )  ->  ( M `  k )  =  <. ( 1st `  ( M `
 k ) ) ,  ( 2nd `  ( M `  k )
) >. )
9340, 92syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( M `  k )  =  <. ( 1st `  ( M `
 k ) ) ,  ( 2nd `  ( M `  k )
) >. )
9493fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( ball `  D ) `  ( M `  k )
)  =  ( (
ball `  D ) `  <. ( 1st `  ( M `  k )
) ,  ( 2nd `  ( M `  k
) ) >. )
)
95 df-ov 6084 . . . . . . . . . 10  |-  ( ( 1st `  ( M `
 k ) ) ( ball `  D
) ( 2nd `  ( M `  k )
) )  =  ( ( ball `  D
) `  <. ( 1st `  ( M `  k
) ) ,  ( 2nd `  ( M `
 k ) )
>. )
9694, 95syl6reqr 2487 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 2nd `  ( M `  k
) ) )  =  ( ( ball `  D
) `  ( M `  k ) ) )
9777, 91, 963sstr3d 3390 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( S `
 k ) B k )  C_  (
( ball `  D ) `  ( M `  k
) ) )
989mopntop 18470 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
9937, 98syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  J  e.  Top )
100 blssm 18448 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( 1st `  ( M `  k )
)  e.  X  /\  ( 2nd `  ( M `
 k ) )  e.  RR* )  ->  (
( 1st `  ( M `  k )
) ( ball `  D
) ( 2nd `  ( M `  k )
) )  C_  X
)
10137, 42, 52, 100syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( 2nd `  ( M `  k
) ) )  C_  X )
1029mopnuni 18471 . . . . . . . . . . . 12  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
10337, 102syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  X  =  U. J )
104101, 96, 1033sstr3d 3390 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( ball `  D ) `  ( M `  k )
)  C_  U. J )
105 eqid 2436 . . . . . . . . . . 11  |-  U. J  =  U. J
106105sscls 17120 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( ball `  D
) `  ( M `  k ) )  C_  U. J )  ->  (
( ball `  D ) `  ( M `  k
) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( M `  k ) ) ) )
10799, 104, 106syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( ball `  D ) `  ( M `  k )
)  C_  ( ( cls `  J ) `  ( ( ball `  D
) `  ( M `  k ) ) ) )
10896fveq2d 5732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( cls `  J ) `  (
( 1st `  ( M `  k )
) ( ball `  D
) ( 2nd `  ( M `  k )
) ) )  =  ( ( cls `  J
) `  ( ( ball `  D ) `  ( M `  k ) ) ) )
10912ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( x  / 
2 )  e.  RR+ )
110109rpxrd 10649 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( x  / 
2 )  e.  RR* )
111 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( 2nd `  ( M `  k )
)  <  ( x  /  2 ) )
1129blsscls 18537 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( 1st `  ( M `  k
) )  e.  X
)  /\  ( ( 2nd `  ( M `  k ) )  e. 
RR*  /\  ( x  /  2 )  e. 
RR*  /\  ( 2nd `  ( M `  k
) )  <  (
x  /  2 ) ) )  ->  (
( cls `  J
) `  ( ( 1st `  ( M `  k ) ) (
ball `  D )
( 2nd `  ( M `  k )
) ) )  C_  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( x  / 
2 ) ) )
11337, 42, 52, 110, 111, 112syl23anc 1191 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( cls `  J ) `  (
( 1st `  ( M `  k )
) ( ball `  D
) ( 2nd `  ( M `  k )
) ) )  C_  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( x  / 
2 ) ) )
114108, 113eqsstr3d 3383 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( cls `  J ) `  (
( ball `  D ) `  ( M `  k
) ) )  C_  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( x  / 
2 ) ) )
115 rpre 10618 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
116115ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  x  e.  RR )
117 heibor.17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st  o.  M
) ( ~~> t `  J ) Y )
1189, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23heiborlem6 26525 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. t  e.  NN  ( ( ball `  D
) `  ( M `  ( t  +  1 ) ) )  C_  ( ( ball `  D
) `  ( M `  t ) ) )
1194, 38, 118, 9caublcls 19261 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 1st  o.  M ) ( ~~> t `  J ) Y  /\  k  e.  NN )  ->  Y  e.  ( ( cls `  J ) `
 ( ( ball `  D ) `  ( M `  k )
) ) )
1201193expia 1155 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 1st  o.  M ) ( ~~> t `  J ) Y )  ->  ( k  e.  NN  ->  Y  e.  ( ( cls `  J
) `  ( ( ball `  D ) `  ( M `  k ) ) ) ) )
121117, 120mpdan 650 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  NN  ->  Y  e.  ( ( cls `  J ) `
 ( ( ball `  D ) `  ( M `  k )
) ) ) )
122121imp 419 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  Y  e.  ( ( cls `  J
) `  ( ( ball `  D ) `  ( M `  k ) ) ) )
123122ad2ant2r 728 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  Y  e.  ( ( cls `  J
) `  ( ( ball `  D ) `  ( M `  k ) ) ) )
124114, 123sseldd 3349 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  Y  e.  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( x  / 
2 ) ) )
125 blhalf 18435 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( 1st `  ( M `  k
) )  e.  X
)  /\  ( x  e.  RR  /\  Y  e.  ( ( 1st `  ( M `  k )
) ( ball `  D
) ( x  / 
2 ) ) ) )  ->  ( ( 1st `  ( M `  k ) ) (
ball `  D )
( x  /  2
) )  C_  ( Y ( ball `  D
) x ) )
12637, 42, 116, 124, 125syl22anc 1185 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( 1st `  ( M `  k
) ) ( ball `  D ) ( x  /  2 ) ) 
C_  ( Y (
ball `  D )
x ) )
127114, 126sstrd 3358 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( cls `  J ) `  (
( ball `  D ) `  ( M `  k
) ) )  C_  ( Y ( ball `  D
) x ) )
128107, 127sstrd 3358 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( ball `  D ) `  ( M `  k )
)  C_  ( Y
( ball `  D )
x ) )
12997, 128sstrd 3358 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( S `
 k ) B k )  C_  ( Y ( ball `  D
) x ) )
130 sstr2 3355 . . . . . . 7  |-  ( ( ( S `  k
) B k ) 
C_  ( Y (
ball `  D )
x )  ->  (
( Y ( ball `  D ) x ) 
C_  Z  ->  (
( S `  k
) B k ) 
C_  Z ) )
131129, 130syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( Y ( ball `  D
) x )  C_  Z  ->  ( ( S `
 k ) B k )  C_  Z
) )
132 unisng 4032 . . . . . . . . . . . . 13  |-  ( Z  e.  U  ->  U. { Z }  =  Z
)
1336, 132syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  U. { Z }  =  Z )
134133sseq2d 3376 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( S `
 k ) B k )  C_  U. { Z }  <->  ( ( S `
 k ) B k )  C_  Z
) )
135134biimpar 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( S `  k ) B k )  C_  Z )  ->  (
( S `  k
) B k ) 
C_  U. { Z }
)
1366snssd 3943 . . . . . . . . . . . . 13  |-  ( ph  ->  { Z }  C_  U )
137 snex 4405 . . . . . . . . . . . . . 14  |-  { Z }  e.  _V
138137elpw 3805 . . . . . . . . . . . . 13  |-  ( { Z }  e.  ~P U 
<->  { Z }  C_  U )
139136, 138sylibr 204 . . . . . . . . . . . 12  |-  ( ph  ->  { Z }  e.  ~P U )
140 snfi 7187 . . . . . . . . . . . . 13  |-  { Z }  e.  Fin
141140a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  { Z }  e.  Fin )
142 elin 3530 . . . . . . . . . . . 12  |-  ( { Z }  e.  ( ~P U  i^i  Fin ) 
<->  ( { Z }  e.  ~P U  /\  { Z }  e.  Fin ) )
143139, 141, 142sylanbrc 646 . . . . . . . . . . 11  |-  ( ph  ->  { Z }  e.  ( ~P U  i^i  Fin ) )
144 unieq 4024 . . . . . . . . . . . . 13  |-  ( v  =  { Z }  ->  U. v  =  U. { Z } )
145144sseq2d 3376 . . . . . . . . . . . 12  |-  ( v  =  { Z }  ->  ( ( ( S `
 k ) B k )  C_  U. v  <->  ( ( S `  k
) B k ) 
C_  U. { Z }
) )
146145rspcev 3052 . . . . . . . . . . 11  |-  ( ( { Z }  e.  ( ~P U  i^i  Fin )  /\  ( ( S `
 k ) B k )  C_  U. { Z } )  ->  E. v  e.  ( ~P U  i^i  Fin ) ( ( S `
 k ) B k )  C_  U. v
)
147143, 146sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( S `  k ) B k )  C_  U. { Z } )  ->  E. v  e.  ( ~P U  i^i  Fin ) ( ( S `
 k ) B k )  C_  U. v
)
148135, 147syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  ( ( S `  k ) B k )  C_  Z )  ->  E. v  e.  ( ~P U  i^i  Fin ) ( ( S `
 k ) B k )  C_  U. v
)
149 ovex 6106 . . . . . . . . . . 11  |-  ( ( S `  k ) B k )  e. 
_V
150 sseq1 3369 . . . . . . . . . . . . 13  |-  ( u  =  ( ( S `
 k ) B k )  ->  (
u  C_  U. v  <->  ( ( S `  k
) B k ) 
C_  U. v ) )
151150rexbidv 2726 . . . . . . . . . . . 12  |-  ( u  =  ( ( S `
 k ) B k )  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin )
( ( S `  k ) B k )  C_  U. v
) )
152151notbid 286 . . . . . . . . . . 11  |-  ( u  =  ( ( S `
 k ) B k )  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) ( ( S `
 k ) B k )  C_  U. v
) )
153149, 152, 15elab2 3085 . . . . . . . . . 10  |-  ( ( ( S `  k
) B k )  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) ( ( S `
 k ) B k )  C_  U. v
)
154153con2bii 323 . . . . . . . . 9  |-  ( E. v  e.  ( ~P U  i^i  Fin )
( ( S `  k ) B k )  C_  U. v  <->  -.  ( ( S `  k ) B k )  e.  K )
155148, 154sylib 189 . . . . . . . 8  |-  ( (
ph  /\  ( ( S `  k ) B k )  C_  Z )  ->  -.  ( ( S `  k ) B k )  e.  K )
156155ex 424 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 k ) B k )  C_  Z  ->  -.  ( ( S `
 k ) B k )  e.  K
) )
157156ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( ( S `  k ) B k )  C_  Z  ->  -.  ( ( S `  k ) B k )  e.  K ) )
158131, 157syld 42 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  ( ( Y ( ball `  D
) x )  C_  Z  ->  -.  ( ( S `  k ) B k )  e.  K ) )
15936, 158mt2d 111 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  NN  /\  ( 2nd `  ( M `
 k ) )  <  ( x  / 
2 ) ) )  ->  -.  ( Y
( ball `  D )
x )  C_  Z
)
16027, 159rexlimddv 2834 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  -.  ( Y ( ball `  D
) x )  C_  Z )
161160nrexdv 2809 . 2  |-  ( ph  ->  -.  E. x  e.  RR+  ( Y ( ball `  D ) x ) 
C_  Z )
16211, 161pm2.21dd 101 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   _Vcvv 2956    i^i cin 3319    C_ wss 3320   ifcif 3739   ~Pcpw 3799   {csn 3814   <.cop 3817   U.cuni 4015   U_ciun 4093   class class class wbr 4212   {copab 4265    e. cmpt 4266    X. cxp 4876    o. ccom 4882   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1stc1st 6347   2ndc2nd 6348   Fincfn 7109   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   3c3 10050   NN0cn0 10221   RR+crp 10612    seq cseq 11323   ^cexp 11382   * Metcxmt 16686   Metcme 16687   ballcbl 16688   MetOpencmopn 16691   Topctop 16958   clsccl 17082   ~~> tclm 17290   CMetcms 19207
This theorem is referenced by:  heiborlem9  26528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-fl 11202  df-seq 11324  df-exp 11383  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cld 17083  df-ntr 17084  df-cls 17085  df-lm 17293  df-cmet 19210
  Copyright terms: Public domain W3C validator