Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Unicode version

Theorem heiborlem9 25866
Description: Lemma for heibor 25868. Discharge the hypotheses of heiborlem8 25865 by applying caubl 18837 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
heibor.9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
heibor.10  |-  ( ph  ->  C G 0 )
heibor.11  |-  S  =  seq  0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
heibor.12  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
heibor.13  |-  ( ph  ->  U  C_  J )
heiborlem9.14  |-  ( ph  ->  U. U  =  X )
Assertion
Ref Expression
heiborlem9  |-  ( ph  ->  ps )
Distinct variable groups:    x, n, y, u, F    x, G    ph, x    m, n, u, v, x, y, z, D    m, M, u, x, y, z    T, m, n, x, y, z    B, n, u, v, y   
m, J, n, u, v, x, y, z    U, n, u, v, x, y, z    ps, y,
z    S, m, n, u, v, x, y, z   
m, X, n, u, v, x, y, z    C, m, n, u, v, y    n, K, x, y, z    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    ps( x, v, u, m, n)    B( z, m)    C( x, z)    T( v, u)    U( m)    F( z, v, m)    G( y, z, v, u, m, n)    K( v, u, m)    M( v, n)

Proof of Theorem heiborlem9
Dummy variables  t 
k  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 18816 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
3 metxmet 18001 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
41, 2, 33syl 18 . . . . . 6  |-  ( ph  ->  D  e.  ( * Met `  X ) )
5 heibor.1 . . . . . . 7  |-  J  =  ( MetOpen `  D )
65mopntopon 18087 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 15 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 heibor.3 . . . . . . . . 9  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
9 heibor.4 . . . . . . . . 9  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
10 heibor.5 . . . . . . . . 9  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
11 heibor.7 . . . . . . . . 9  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
12 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
13 heibor.9 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
14 heibor.10 . . . . . . . . 9  |-  ( ph  ->  C G 0 )
15 heibor.11 . . . . . . . . 9  |-  S  =  seq  0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
16 heibor.12 . . . . . . . . 9  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 25862 . . . . . . . 8  |-  ( ph  ->  M : NN --> ( X  X.  RR+ ) )
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 25863 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( ( ball `  D
) `  ( M `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( M `  k ) ) )
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 25864 . . . . . . . . 9  |-  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r
2019a1i 10 . . . . . . . 8  |-  ( ph  ->  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k ) )  < 
r )
214, 17, 18, 20caubl 18837 . . . . . . 7  |-  ( ph  ->  ( 1st  o.  M
)  e.  ( Cau `  D ) )
225cmetcau 18819 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( 1st  o.  M )  e.  ( Cau `  D
) )  ->  ( 1st  o.  M )  e. 
dom  ( ~~> t `  J ) )
231, 21, 22syl2anc 642 . . . . . 6  |-  ( ph  ->  ( 1st  o.  M
)  e.  dom  ( ~~> t `  J )
)
245methaus 18168 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Haus )
254, 24syl 15 . . . . . . 7  |-  ( ph  ->  J  e.  Haus )
26 lmfun 17215 . . . . . . 7  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
27 funfvbrb 5721 . . . . . . 7  |-  ( Fun  ( ~~> t `  J
)  ->  ( ( 1st  o.  M )  e. 
dom  ( ~~> t `  J )  <->  ( 1st  o.  M ) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) ) )
2825, 26, 273syl 18 . . . . . 6  |-  ( ph  ->  ( ( 1st  o.  M )  e.  dom  (
~~> t `  J )  <-> 
( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) ) )
2923, 28mpbid 201 . . . . 5  |-  ( ph  ->  ( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) )
30 lmcl 17131 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( 1st  o.  M ) ( ~~> t `  J ) ( ( ~~> t `  J ) `  ( 1st  o.  M ) ) )  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M
) )  e.  X
)
317, 29, 30syl2anc 642 . . . 4  |-  ( ph  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  X )
32 heiborlem9.14 . . . 4  |-  ( ph  ->  U. U  =  X )
3331, 32eleqtrrd 2435 . . 3  |-  ( ph  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  U. U )
34 eluni2 3912 . . 3  |-  ( ( ( ~~> t `  J
) `  ( 1st  o.  M ) )  e. 
U. U  <->  E. t  e.  U  ( ( ~~> t `  J ) `  ( 1st  o.  M
) )  e.  t )
3533, 34sylib 188 . 2  |-  ( ph  ->  E. t  e.  U  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t )
361adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  D  e.  ( CMet `  X ) )
3711adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
3812adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
3913adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
4014adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  C G 0 )
41 heibor.13 . . . . . 6  |-  ( ph  ->  U  C_  J )
4241adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  U  C_  J )
43 fvex 5622 . . . . 5  |-  ( ( ~~> t `  J ) `
 ( 1st  o.  M ) )  e. 
_V
44 simprr 733 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t )
45 simprl 732 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
t  e.  U )
4629adantr 451 . . . . 5  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) )
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 25865 . . . 4  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  ps )
4847expr 598 . . 3  |-  ( (
ph  /\  t  e.  U )  ->  (
( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t  ->  ps ) )
4948rexlimdva 2743 . 2  |-  ( ph  ->  ( E. t  e.  U  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t  ->  ps ) )
5035, 49mpd 14 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620    i^i cin 3227    C_ wss 3228   ifcif 3641   ~Pcpw 3701   <.cop 3719   U.cuni 3908   U_ciun 3986   class class class wbr 4104   {copab 4157    e. cmpt 4158   dom cdm 4771    o. ccom 4775   Fun wfun 5331   -->wf 5333   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1stc1st 6207   2ndc2nd 6208   Fincfn 6951   0cc0 8827   1c1 8828    + caddc 8830    < clt 8957    - cmin 9127    / cdiv 9513   NNcn 9836   2c2 9885   3c3 9886   NN0cn0 10057   RR+crp 10446    seq cseq 11138   ^cexp 11197   * Metcxmt 16468   Metcme 16469   ballcbl 16470   MetOpencmopn 16473  TopOnctopon 16738   ~~> tclm 17062   Hauscha 17142   Caucca 18783   CMetcms 18784
This theorem is referenced by:  heiborlem10  25867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-er 6747  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ico 10754  df-icc 10755  df-fl 11017  df-seq 11139  df-exp 11198  df-rest 13426  df-topgen 13443  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-top 16742  df-bases 16744  df-topon 16745  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-lm 17065  df-haus 17149  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-cfil 18785  df-cau 18786  df-cmet 18787
  Copyright terms: Public domain W3C validator