HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Unicode version

Theorem hhcnf 23369
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1  |-  D  =  ( normh  o.  -h  )
hhcn.2  |-  J  =  ( MetOpen `  D )
hhcn.4  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
hhcnf  |-  ConFn  =  ( J  Cn  K )

Proof of Theorem hhcnf
Dummy variables  x  w  y  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2683 . 2  |-  { t  e.  ( CC  ^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) }  =  { t  |  ( t  e.  ( CC  ^m  ~H )  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) }
2 df-cnfn 23311 . 2  |-  ConFn  =  {
t  e.  ( CC 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) }
3 hhcn.1 . . . . . . . . . . . . . 14  |-  D  =  ( normh  o.  -h  )
43hilmetdval 22659 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( x D w )  =  ( normh `  ( x  -h  w
) ) )
5 normsub 22606 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( normh `  ( x  -h  w ) )  =  ( normh `  ( w  -h  x ) ) )
64, 5eqtrd 2444 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( x D w )  =  ( normh `  ( w  -h  x
) ) )
76adantll 695 . . . . . . . . . . 11  |-  ( ( ( t : ~H --> CC  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( x D w )  =  (
normh `  ( w  -h  x ) ) )
87breq1d 4190 . . . . . . . . . 10  |-  ( ( ( t : ~H --> CC  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x D w )  < 
z  <->  ( normh `  (
w  -h  x ) )  <  z ) )
9 ffvelrn 5835 . . . . . . . . . . . . . 14  |-  ( ( t : ~H --> CC  /\  x  e.  ~H )  ->  ( t `  x
)  e.  CC )
10 ffvelrn 5835 . . . . . . . . . . . . . 14  |-  ( ( t : ~H --> CC  /\  w  e.  ~H )  ->  ( t `  w
)  e.  CC )
119, 10anim12dan 811 . . . . . . . . . . . . 13  |-  ( ( t : ~H --> CC  /\  ( x  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
t `  x )  e.  CC  /\  ( t `
 w )  e.  CC ) )
12 eqid 2412 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1312cnmetdval 18766 . . . . . . . . . . . . . 14  |-  ( ( ( t `  x
)  e.  CC  /\  ( t `  w
)  e.  CC )  ->  ( ( t `
 x ) ( abs  o.  -  )
( t `  w
) )  =  ( abs `  ( ( t `  x )  -  ( t `  w ) ) ) )
14 abssub 12093 . . . . . . . . . . . . . 14  |-  ( ( ( t `  x
)  e.  CC  /\  ( t `  w
)  e.  CC )  ->  ( abs `  (
( t `  x
)  -  ( t `
 w ) ) )  =  ( abs `  ( ( t `  w )  -  (
t `  x )
) ) )
1513, 14eqtrd 2444 . . . . . . . . . . . . 13  |-  ( ( ( t `  x
)  e.  CC  /\  ( t `  w
)  e.  CC )  ->  ( ( t `
 x ) ( abs  o.  -  )
( t `  w
) )  =  ( abs `  ( ( t `  w )  -  ( t `  x ) ) ) )
1611, 15syl 16 . . . . . . . . . . . 12  |-  ( ( t : ~H --> CC  /\  ( x  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
t `  x )
( abs  o.  -  )
( t `  w
) )  =  ( abs `  ( ( t `  w )  -  ( t `  x ) ) ) )
1716anassrs 630 . . . . . . . . . . 11  |-  ( ( ( t : ~H --> CC  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( t `
 x ) ( abs  o.  -  )
( t `  w
) )  =  ( abs `  ( ( t `  w )  -  ( t `  x ) ) ) )
1817breq1d 4190 . . . . . . . . . 10  |-  ( ( ( t : ~H --> CC  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( t `  x ) ( abs  o.  -  ) ( t `  w ) )  < 
y  <->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) )
198, 18imbi12d 312 . . . . . . . . 9  |-  ( ( ( t : ~H --> CC  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x D w )  <  z  ->  (
( t `  x
) ( abs  o.  -  ) ( t `
 w ) )  <  y )  <->  ( ( normh `  ( w  -h  x ) )  < 
z  ->  ( abs `  ( ( t `  w )  -  (
t `  x )
) )  <  y
) ) )
2019ralbidva 2690 . . . . . . . 8  |-  ( ( t : ~H --> CC  /\  x  e.  ~H )  ->  ( A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x )
( abs  o.  -  )
( t `  w
) )  <  y
)  <->  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
2120rexbidv 2695 . . . . . . 7  |-  ( ( t : ~H --> CC  /\  x  e.  ~H )  ->  ( E. z  e.  RR+  A. w  e.  ~H  ( ( x D w )  <  z  ->  ( ( t `  x ) ( abs 
o.  -  ) (
t `  w )
)  <  y )  <->  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
2221ralbidv 2694 . . . . . 6  |-  ( ( t : ~H --> CC  /\  x  e.  ~H )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( x D w )  <  z  -> 
( ( t `  x ) ( abs 
o.  -  ) (
t `  w )
)  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
2322ralbidva 2690 . . . . 5  |-  ( t : ~H --> CC  ->  ( A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x )
( abs  o.  -  )
( t `  w
) )  <  y
)  <->  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
2423pm5.32i 619 . . . 4  |-  ( ( t : ~H --> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x )
( abs  o.  -  )
( t `  w
) )  <  y
) )  <->  ( t : ~H --> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
253hilxmet 22658 . . . . 5  |-  D  e.  ( * Met `  ~H )
26 cnxmet 18768 . . . . 5  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
27 hhcn.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
28 hhcn.4 . . . . . . 7  |-  K  =  ( TopOpen ` fld )
2928cnfldtopn 18777 . . . . . 6  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
3027, 29metcn 18534 . . . . 5  |-  ( ( D  e.  ( * Met `  ~H )  /\  ( abs  o.  -  )  e.  ( * Met `  CC ) )  ->  ( t  e.  ( J  Cn  K
)  <->  ( t : ~H --> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( x D w )  <  z  ->  ( ( t `  x ) ( abs 
o.  -  ) (
t `  w )
)  <  y )
) ) )
3125, 26, 30mp2an 654 . . . 4  |-  ( t  e.  ( J  Cn  K )  <->  ( t : ~H --> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( x D w )  <  z  ->  ( ( t `  x ) ( abs 
o.  -  ) (
t `  w )
)  <  y )
) )
32 cnex 9035 . . . . . 6  |-  CC  e.  _V
33 ax-hilex 22463 . . . . . 6  |-  ~H  e.  _V
3432, 33elmap 7009 . . . . 5  |-  ( t  e.  ( CC  ^m  ~H )  <->  t : ~H --> CC )
3534anbi1i 677 . . . 4  |-  ( ( t  e.  ( CC 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) )  <->  ( t : ~H --> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
3624, 31, 353bitr4i 269 . . 3  |-  ( t  e.  ( J  Cn  K )  <->  ( t  e.  ( CC  ^m  ~H )  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) )
3736abbi2i 2523 . 2  |-  ( J  Cn  K )  =  { t  |  ( t  e.  ( CC 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) ) }
381, 2, 373eqtr4i 2442 1  |-  ConFn  =  ( J  Cn  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2398   A.wral 2674   E.wrex 2675   {crab 2678   class class class wbr 4180    o. ccom 4849   -->wf 5417   ` cfv 5421  (class class class)co 6048    ^m cmap 6985   CCcc 8952    < clt 9084    - cmin 9255   RR+crp 10576   abscabs 12002   TopOpenctopn 13612   * Metcxmt 16649   MetOpencmopn 16654  ℂfldccnfld 16666    Cn ccn 17250   ~Hchil 22383   normhcno 22387    -h cmv 22389   ConFnccnfn 22417
This theorem is referenced by:  nlelchi  23525
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034  ax-hilex 22463  ax-hfvadd 22464  ax-hvcom 22465  ax-hvass 22466  ax-hv0cl 22467  ax-hvaddid 22468  ax-hfvmul 22469  ax-hvmulid 22470  ax-hvmulass 22471  ax-hvdistr1 22472  ax-hvdistr2 22473  ax-hvmul0 22474  ax-hfi 22542  ax-his1 22545  ax-his2 22546  ax-his3 22547  ax-his4 22548
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-fz 11008  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-plusg 13505  df-mulr 13506  df-starv 13507  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-rest 13613  df-topn 13614  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-cn 17253  df-cnp 17254  df-grpo 21740  df-gid 21741  df-ginv 21742  df-gdiv 21743  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-vs 22039  df-nmcv 22040  df-ims 22041  df-hnorm 22432  df-hvsub 22435  df-cnfn 23311
  Copyright terms: Public domain W3C validator