HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem1 Unicode version

Theorem hhshsslem1 21844
Description: Lemma for hhsssh 21846. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
hhsst.2  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
hhssp3.3  |-  W  e.  ( SubSp `  U )
hhssp3.4  |-  H  C_  ~H
Assertion
Ref Expression
hhshsslem1  |-  H  =  ( BaseSet `  W )

Proof of Theorem hhshsslem1
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
2 eqid 2283 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
31, 2bafval 21160 . . 3  |-  ( BaseSet `  W )  =  ran  ( +v `  W )
4 hhsst.1 . . . . . . 7  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
54hhnv 21744 . . . . . 6  |-  U  e.  NrmCVec
6 hhssp3.3 . . . . . 6  |-  W  e.  ( SubSp `  U )
7 eqid 2283 . . . . . . 7  |-  ( SubSp `  U )  =  (
SubSp `  U )
87sspnv 21302 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  W  e.  NrmCVec )
95, 6, 8mp2an 653 . . . . 5  |-  W  e.  NrmCVec
102nvgrp 21173 . . . . 5  |-  ( W  e.  NrmCVec  ->  ( +v `  W )  e.  GrpOp )
11 grporndm 20877 . . . . 5  |-  ( ( +v `  W )  e.  GrpOp  ->  ran  ( +v
`  W )  =  dom  dom  ( +v `  W ) )
129, 10, 11mp2b 9 . . . 4  |-  ran  ( +v `  W )  =  dom  dom  ( +v `  W )
13 hhsst.2 . . . . . . . . . 10  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
1413fveq2i 5528 . . . . . . . . 9  |-  ( +v
`  W )  =  ( +v `  <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
15 eqid 2283 . . . . . . . . . . 11  |-  ( +v
`  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )  =  ( +v `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
1615vafval 21159 . . . . . . . . . 10  |-  ( +v
`  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )  =  ( 1st `  ( 1st `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
)
17 opex 4237 . . . . . . . . . . . . 13  |-  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.  e.  _V
18 normf 21702 . . . . . . . . . . . . . . 15  |-  normh : ~H --> RR
19 ax-hilex 21579 . . . . . . . . . . . . . . 15  |-  ~H  e.  _V
20 fex 5749 . . . . . . . . . . . . . . 15  |-  ( (
normh : ~H --> RR  /\  ~H  e.  _V )  ->  normh  e.  _V )
2118, 19, 20mp2an 653 . . . . . . . . . . . . . 14  |-  normh  e.  _V
2221resex 4995 . . . . . . . . . . . . 13  |-  ( normh  |`  H )  e.  _V
2317, 22op1st 6128 . . . . . . . . . . . 12  |-  ( 1st `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )  =  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.
2423fveq2i 5528 . . . . . . . . . . 11  |-  ( 1st `  ( 1st `  <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
)  =  ( 1st `  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. )
25 hilablo 21739 . . . . . . . . . . . . 13  |-  +h  e.  AbelOp
26 resexg 4994 . . . . . . . . . . . . 13  |-  (  +h  e.  AbelOp  ->  (  +h  |`  ( H  X.  H ) )  e.  _V )
2725, 26ax-mp 8 . . . . . . . . . . . 12  |-  (  +h  |`  ( H  X.  H
) )  e.  _V
28 hvmulex 21591 . . . . . . . . . . . . 13  |-  .h  e.  _V
2928resex 4995 . . . . . . . . . . . 12  |-  (  .h  |`  ( CC  X.  H
) )  e.  _V
3027, 29op1st 6128 . . . . . . . . . . 11  |-  ( 1st `  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. )  =  (  +h  |`  ( H  X.  H ) )
3124, 30eqtri 2303 . . . . . . . . . 10  |-  ( 1st `  ( 1st `  <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
)  =  (  +h  |`  ( H  X.  H
) )
3216, 31eqtri 2303 . . . . . . . . 9  |-  ( +v
`  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )  =  (  +h  |`  ( H  X.  H ) )
3314, 32eqtri 2303 . . . . . . . 8  |-  ( +v
`  W )  =  (  +h  |`  ( H  X.  H ) )
3433dmeqi 4880 . . . . . . 7  |-  dom  ( +v `  W )  =  dom  (  +h  |`  ( H  X.  H ) )
35 hhssp3.4 . . . . . . . . . 10  |-  H  C_  ~H
36 xpss12 4792 . . . . . . . . . 10  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
3735, 35, 36mp2an 653 . . . . . . . . 9  |-  ( H  X.  H )  C_  ( ~H  X.  ~H )
38 ax-hfvadd 21580 . . . . . . . . . 10  |-  +h  :
( ~H  X.  ~H )
--> ~H
3938fdmi 5394 . . . . . . . . 9  |-  dom  +h  =  ( ~H  X.  ~H )
4037, 39sseqtr4i 3211 . . . . . . . 8  |-  ( H  X.  H )  C_  dom  +h
41 ssdmres 4977 . . . . . . . 8  |-  ( ( H  X.  H ) 
C_  dom  +h  <->  dom  (  +h  |`  ( H  X.  H
) )  =  ( H  X.  H ) )
4240, 41mpbi 199 . . . . . . 7  |-  dom  (  +h  |`  ( H  X.  H ) )  =  ( H  X.  H
)
4334, 42eqtri 2303 . . . . . 6  |-  dom  ( +v `  W )  =  ( H  X.  H
)
4443dmeqi 4880 . . . . 5  |-  dom  dom  ( +v `  W )  =  dom  ( H  X.  H )
45 dmxpid 4898 . . . . 5  |-  dom  ( H  X.  H )  =  H
4644, 45eqtri 2303 . . . 4  |-  dom  dom  ( +v `  W )  =  H
4712, 46eqtri 2303 . . 3  |-  ran  ( +v `  W )  =  H
483, 47eqtri 2303 . 2  |-  ( BaseSet `  W )  =  H
4948eqcomi 2287 1  |-  H  =  ( BaseSet `  W )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   <.cop 3643    X. cxp 4687   dom cdm 4689   ran crn 4690    |` cres 4691   -->wf 5251   ` cfv 5255   1stc1st 6120   CCcc 8735   RRcr 8736   GrpOpcgr 20853   AbelOpcablo 20948   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   SubSpcss 21297   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503
This theorem is referenced by:  hhshsslem2  21845  hhssba  21848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-ssp 21298  df-hnorm 21548  df-hvsub 21551
  Copyright terms: Public domain W3C validator