HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloi Unicode version

Theorem hhssabloi 21839
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1  |-  H  e.  SH
Assertion
Ref Expression
hhssabloi  |-  (  +h  |`  ( H  X.  H
) )  e.  AbelOp

Proof of Theorem hhssabloi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 21739 . . . . . 6  |-  +h  e.  AbelOp
2 ablogrpo 20951 . . . . . 6  |-  (  +h  e.  AbelOp  ->  +h  e.  GrpOp )
31, 2ax-mp 8 . . . . 5  |-  +h  e.  GrpOp
4 df-hba 21549 . . . . . 6  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
5 eqid 2283 . . . . . . 7  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
65hhva 21745 . . . . . 6  |-  +h  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >. )
74, 6bafval 21160 . . . . 5  |-  ~H  =  ran  +h
8 hilid 21740 . . . . . 6  |-  (GId `  +h  )  =  0h
98eqcomi 2287 . . . . 5  |-  0h  =  (GId `  +h  )
105hhnv 21744 . . . . . 6  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
115hhsm 21748 . . . . . . 7  |-  .h  =  ( .s OLD `  <. <.  +h  ,  .h  >. ,  normh >.
)
12 eqid 2283 . . . . . . 7  |-  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )
136, 11, 12nvinvfval 21198 . . . . . 6  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  ( inv `  +h  ) )
1410, 13ax-mp 8 . . . . 5  |-  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  ( inv `  +h  )
15 hhssabl.1 . . . . . 6  |-  H  e.  SH
1615shssii 21792 . . . . 5  |-  H  C_  ~H
17 eqid 2283 . . . . 5  |-  (  +h  |`  ( H  X.  H
) )  =  (  +h  |`  ( H  X.  H ) )
18 shaddcl 21796 . . . . . 6  |-  ( ( H  e.  SH  /\  x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
1915, 18mp3an1 1264 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
20 sh0 21795 . . . . . 6  |-  ( H  e.  SH  ->  0h  e.  H )
2115, 20ax-mp 8 . . . . 5  |-  0h  e.  H
22 ax-hfvmul 21585 . . . . . . . 8  |-  .h  :
( CC  X.  ~H )
--> ~H
23 ffn 5389 . . . . . . . 8  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  .h  Fn  ( CC  X.  ~H )
)
2422, 23ax-mp 8 . . . . . . 7  |-  .h  Fn  ( CC  X.  ~H )
25 neg1cn 9813 . . . . . . 7  |-  -u 1  e.  CC
2612curry1val 6211 . . . . . . 7  |-  ( (  .h  Fn  ( CC 
X.  ~H )  /\  -u 1  e.  CC )  ->  (
(  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  =  (
-u 1  .h  x
) )
2724, 25, 26mp2an 653 . . . . . 6  |-  ( (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  =  (
-u 1  .h  x
)
28 shmulcl 21797 . . . . . . 7  |-  ( ( H  e.  SH  /\  -u 1  e.  CC  /\  x  e.  H )  ->  ( -u 1  .h  x )  e.  H
)
2915, 25, 28mp3an12 1267 . . . . . 6  |-  ( x  e.  H  ->  ( -u 1  .h  x )  e.  H )
3027, 29syl5eqel 2367 . . . . 5  |-  ( x  e.  H  ->  (
(  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  e.  H
)
313, 7, 9, 14, 16, 17, 19, 21, 30issubgoi 20977 . . . 4  |-  (  +h  |`  ( H  X.  H
) )  e.  (
SubGrpOp `  +h  )
32 issubgo 20970 . . . 4  |-  ( (  +h  |`  ( H  X.  H ) )  e.  ( SubGrpOp `  +h  )  <->  (  +h  e.  GrpOp  /\  (  +h  |`  ( H  X.  H
) )  e.  GrpOp  /\  (  +h  |`  ( H  X.  H ) ) 
C_  +h  ) )
3331, 32mpbi 199 . . 3  |-  (  +h  e.  GrpOp  /\  (  +h  |`  ( H  X.  H
) )  e.  GrpOp  /\  (  +h  |`  ( H  X.  H ) ) 
C_  +h  )
3433simp2i 965 . 2  |-  (  +h  |`  ( H  X.  H
) )  e.  GrpOp
35 xpss12 4792 . . . . 5  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
3616, 16, 35mp2an 653 . . . 4  |-  ( H  X.  H )  C_  ( ~H  X.  ~H )
37 ax-hfvadd 21580 . . . . 5  |-  +h  :
( ~H  X.  ~H )
--> ~H
3837fdmi 5394 . . . 4  |-  dom  +h  =  ( ~H  X.  ~H )
3936, 38sseqtr4i 3211 . . 3  |-  ( H  X.  H )  C_  dom  +h
40 ssdmres 4977 . . 3  |-  ( ( H  X.  H ) 
C_  dom  +h  <->  dom  (  +h  |`  ( H  X.  H
) )  =  ( H  X.  H ) )
4139, 40mpbi 199 . 2  |-  dom  (  +h  |`  ( H  X.  H ) )  =  ( H  X.  H
)
4215sheli 21793 . . . 4  |-  ( x  e.  H  ->  x  e.  ~H )
4315sheli 21793 . . . 4  |-  ( y  e.  H  ->  y  e.  ~H )
44 ax-hvcom 21581 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
4542, 43, 44syl2an 463 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
46 ovres 5987 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) y )  =  ( x  +h  y ) )
47 ovres 5987 . . . 4  |-  ( ( y  e.  H  /\  x  e.  H )  ->  ( y (  +h  |`  ( H  X.  H
) ) x )  =  ( y  +h  x ) )
4847ancoms 439 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( y (  +h  |`  ( H  X.  H
) ) x )  =  ( y  +h  x ) )
4945, 46, 483eqtr4d 2325 . 2  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) y )  =  ( y (  +h  |`  ( H  X.  H ) ) x ) )
5034, 41, 49isabloi 20955 1  |-  (  +h  |`  ( H  X.  H
) )  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   {csn 3640   <.cop 3643    X. cxp 4687   `'ccnv 4688   dom cdm 4689    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   2ndc2nd 6121   CCcc 8735   1c1 8738   -ucneg 9038   GrpOpcgr 20853  GIdcgi 20854   invcgn 20855   AbelOpcablo 20948   SubGrpOpcsubgo 20968   NrmCVeccnv 21140   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503   0hc0v 21504   SHcsh 21508
This theorem is referenced by:  hhssablo  21840  hhssnv  21841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-sh 21786
  Copyright terms: Public domain W3C validator