HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi2eq Unicode version

Theorem hi2eq 22564
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi2eq  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) )  <-> 
A  =  B ) )

Proof of Theorem hi2eq
StepHypRef Expression
1 hvsubcl 22477 . . . . 5  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  e.  ~H )
2 his2sub 22551 . . . . 5  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( A  -h  B )  e. 
~H )  ->  (
( A  -h  B
)  .ih  ( A  -h  B ) )  =  ( ( A  .ih  ( A  -h  B
) )  -  ( B  .ih  ( A  -h  B ) ) ) )
31, 2mpd3an3 1280 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  =  ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) ) )
43eqeq1d 2416 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  =  0  <-> 
( ( A  .ih  ( A  -h  B
) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0 ) )
5 his6 22558 . . . 4  |-  ( ( A  -h  B )  e.  ~H  ->  (
( ( A  -h  B )  .ih  ( A  -h  B ) )  =  0  <->  ( A  -h  B )  =  0h ) )
61, 5syl 16 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  =  0  <-> 
( A  -h  B
)  =  0h )
)
74, 6bitr3d 247 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0  <->  ( A  -h  B )  =  0h ) )
8 hicl 22539 . . . 4  |-  ( ( A  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( A  .ih  ( A  -h  B ) )  e.  CC )
91, 8syldan 457 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( A  -h  B ) )  e.  CC )
10 simpr 448 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  B  e.  ~H )
11 hicl 22539 . . . 4  |-  ( ( B  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( B  .ih  ( A  -h  B ) )  e.  CC )
1210, 1, 11syl2anc 643 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( B  .ih  ( A  -h  B ) )  e.  CC )
139, 12subeq0ad 9381 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0  <->  ( A  .ih  ( A  -h  B ) )  =  ( B  .ih  ( A  -h  B ) ) ) )
14 hvsubeq0 22527 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  -h  B )  =  0h  <->  A  =  B ) )
157, 13, 143bitr3d 275 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721  (class class class)co 6044   CCcc 8948   0cc0 8950    - cmin 9251   ~Hchil 22379    .ih csp 22382   0hc0v 22384    -h cmv 22385
This theorem is referenced by:  hial2eq  22565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-hfvadd 22460  ax-hvcom 22461  ax-hvass 22462  ax-hv0cl 22463  ax-hvaddid 22464  ax-hfvmul 22465  ax-hvmulid 22466  ax-hvdistr2 22469  ax-hvmul0 22470  ax-hfi 22538  ax-his2 22542  ax-his3 22543  ax-his4 22544
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-ltxr 9085  df-sub 9253  df-neg 9254  df-hvsub 22431
  Copyright terms: Public domain W3C validator