HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi2eq Unicode version

Theorem hi2eq 21798
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi2eq  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) )  <-> 
A  =  B ) )

Proof of Theorem hi2eq
StepHypRef Expression
1 hvsubcl 21711 . . . . 5  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  e.  ~H )
2 his2sub 21785 . . . . 5  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( A  -h  B )  e. 
~H )  ->  (
( A  -h  B
)  .ih  ( A  -h  B ) )  =  ( ( A  .ih  ( A  -h  B
) )  -  ( B  .ih  ( A  -h  B ) ) ) )
31, 2mpd3an3 1278 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  =  ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) ) )
43eqeq1d 2366 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  =  0  <-> 
( ( A  .ih  ( A  -h  B
) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0 ) )
5 his6 21792 . . . 4  |-  ( ( A  -h  B )  e.  ~H  ->  (
( ( A  -h  B )  .ih  ( A  -h  B ) )  =  0  <->  ( A  -h  B )  =  0h ) )
61, 5syl 15 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  =  0  <-> 
( A  -h  B
)  =  0h )
)
74, 6bitr3d 246 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0  <->  ( A  -h  B )  =  0h ) )
8 hicl 21773 . . . 4  |-  ( ( A  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( A  .ih  ( A  -h  B ) )  e.  CC )
91, 8syldan 456 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( A  -h  B ) )  e.  CC )
10 simpr 447 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  B  e.  ~H )
11 hicl 21773 . . . 4  |-  ( ( B  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( B  .ih  ( A  -h  B ) )  e.  CC )
1210, 1, 11syl2anc 642 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( B  .ih  ( A  -h  B ) )  e.  CC )
13 subeq0 9163 . . 3  |-  ( ( ( A  .ih  ( A  -h  B ) )  e.  CC  /\  ( B  .ih  ( A  -h  B ) )  e.  CC )  ->  (
( ( A  .ih  ( A  -h  B
) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0  <->  ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) ) ) )
149, 12, 13syl2anc 642 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( A 
.ih  ( A  -h  B ) )  -  ( B  .ih  ( A  -h  B ) ) )  =  0  <->  ( A  .ih  ( A  -h  B ) )  =  ( B  .ih  ( A  -h  B ) ) ) )
15 hvsubeq0 21761 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  -h  B )  =  0h  <->  A  =  B ) )
167, 14, 153bitr3d 274 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710  (class class class)co 5945   CCcc 8825   0cc0 8827    - cmin 9127   ~Hchil 21613    .ih csp 21616   0hc0v 21618    -h cmv 21619
This theorem is referenced by:  hial2eq  21799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-hfvadd 21694  ax-hvcom 21695  ax-hvass 21696  ax-hv0cl 21697  ax-hvaddid 21698  ax-hfvmul 21699  ax-hvmulid 21700  ax-hvdistr2 21703  ax-hvmul0 21704  ax-hfi 21772  ax-his2 21776  ax-his3 21777  ax-his4 21778
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-po 4396  df-so 4397  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-ltxr 8962  df-sub 9129  df-neg 9130  df-hvsub 21665
  Copyright terms: Public domain W3C validator