HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial2eq Unicode version

Theorem hial2eq 22569
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hial2eq  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( A  .ih  x )  =  ( B  .ih  x )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem hial2eq
StepHypRef Expression
1 hvsubcl 22481 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  e.  ~H )
2 oveq2 6056 . . . . . 6  |-  ( x  =  ( A  -h  B )  ->  ( A  .ih  x )  =  ( A  .ih  ( A  -h  B ) ) )
3 oveq2 6056 . . . . . 6  |-  ( x  =  ( A  -h  B )  ->  ( B  .ih  x )  =  ( B  .ih  ( A  -h  B ) ) )
42, 3eqeq12d 2426 . . . . 5  |-  ( x  =  ( A  -h  B )  ->  (
( A  .ih  x
)  =  ( B 
.ih  x )  <->  ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) ) ) )
54rspcv 3016 . . . 4  |-  ( ( A  -h  B )  e.  ~H  ->  ( A. x  e.  ~H  ( A  .ih  x )  =  ( B  .ih  x )  ->  ( A  .ih  ( A  -h  B ) )  =  ( B  .ih  ( A  -h  B ) ) ) )
61, 5syl 16 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( A  .ih  x )  =  ( B  .ih  x )  ->  ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) ) ) )
7 hi2eq 22568 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  ( A  -h  B
) )  =  ( B  .ih  ( A  -h  B ) )  <-> 
A  =  B ) )
86, 7sylibd 206 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( A  .ih  x )  =  ( B  .ih  x )  ->  A  =  B ) )
9 oveq1 6055 . . 3  |-  ( A  =  B  ->  ( A  .ih  x )  =  ( B  .ih  x
) )
109ralrimivw 2758 . 2  |-  ( A  =  B  ->  A. x  e.  ~H  ( A  .ih  x )  =  ( B  .ih  x ) )
118, 10impbid1 195 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( A  .ih  x )  =  ( B  .ih  x )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674  (class class class)co 6048   ~Hchil 22383    .ih csp 22386    -h cmv 22389
This theorem is referenced by:  hial2eq2  22570  hoeq1  23294  hoeq2  23295  unoplin  23384  hmoplin  23406  pjss2coi  23628  pj3cor1i  23673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-hfvadd 22464  ax-hvcom 22465  ax-hvass 22466  ax-hv0cl 22467  ax-hvaddid 22468  ax-hfvmul 22469  ax-hvmulid 22470  ax-hvdistr2 22473  ax-hvmul0 22474  ax-hfi 22542  ax-his2 22546  ax-his3 22547  ax-his4 22548
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-ltxr 9089  df-sub 9257  df-neg 9258  df-hvsub 22435
  Copyright terms: Public domain W3C validator