HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hial2eq2 Structured version   Unicode version

Theorem hial2eq2 22614
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hial2eq2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( x  .ih  A )  =  ( x 
.ih  B )  <->  A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem hial2eq2
StepHypRef Expression
1 ax-his1 22589 . . . . . 6  |-  ( ( A  e.  ~H  /\  x  e.  ~H )  ->  ( A  .ih  x
)  =  ( * `
 ( x  .ih  A ) ) )
2 ax-his1 22589 . . . . . 6  |-  ( ( B  e.  ~H  /\  x  e.  ~H )  ->  ( B  .ih  x
)  =  ( * `
 ( x  .ih  B ) ) )
31, 2eqeqan12d 2453 . . . . 5  |-  ( ( ( A  e.  ~H  /\  x  e.  ~H )  /\  ( B  e.  ~H  /\  x  e.  ~H )
)  ->  ( ( A  .ih  x )  =  ( B  .ih  x
)  <->  ( * `  ( x  .ih  A ) )  =  ( * `
 ( x  .ih  B ) ) ) )
4 hicl 22587 . . . . . . 7  |-  ( ( x  e.  ~H  /\  A  e.  ~H )  ->  ( x  .ih  A
)  e.  CC )
54ancoms 441 . . . . . 6  |-  ( ( A  e.  ~H  /\  x  e.  ~H )  ->  ( x  .ih  A
)  e.  CC )
6 hicl 22587 . . . . . . 7  |-  ( ( x  e.  ~H  /\  B  e.  ~H )  ->  ( x  .ih  B
)  e.  CC )
76ancoms 441 . . . . . 6  |-  ( ( B  e.  ~H  /\  x  e.  ~H )  ->  ( x  .ih  B
)  e.  CC )
8 cj11 11972 . . . . . 6  |-  ( ( ( x  .ih  A
)  e.  CC  /\  ( x  .ih  B )  e.  CC )  -> 
( ( * `  ( x  .ih  A ) )  =  ( * `
 ( x  .ih  B ) )  <->  ( x  .ih  A )  =  ( x  .ih  B ) ) )
95, 7, 8syl2an 465 . . . . 5  |-  ( ( ( A  e.  ~H  /\  x  e.  ~H )  /\  ( B  e.  ~H  /\  x  e.  ~H )
)  ->  ( (
* `  ( x  .ih  A ) )  =  ( * `  (
x  .ih  B )
)  <->  ( x  .ih  A )  =  ( x 
.ih  B ) ) )
103, 9bitr2d 247 . . . 4  |-  ( ( ( A  e.  ~H  /\  x  e.  ~H )  /\  ( B  e.  ~H  /\  x  e.  ~H )
)  ->  ( (
x  .ih  A )  =  ( x  .ih  B )  <->  ( A  .ih  x )  =  ( B  .ih  x ) ) )
1110anandirs 806 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  x  e.  ~H )  ->  ( ( x 
.ih  A )  =  ( x  .ih  B
)  <->  ( A  .ih  x )  =  ( B  .ih  x ) ) )
1211ralbidva 2723 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( x  .ih  A )  =  ( x 
.ih  B )  <->  A. x  e.  ~H  ( A  .ih  x )  =  ( B  .ih  x ) ) )
13 hial2eq 22613 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( A  .ih  x )  =  ( B  .ih  x )  <-> 
A  =  B ) )
1412, 13bitrd 246 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  ( x  .ih  A )  =  ( x 
.ih  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   ` cfv 5457  (class class class)co 6084   CCcc 8993   *ccj 11906   ~Hchil 22427    .ih csp 22430
This theorem is referenced by:  hoeq2  23339  adjvalval  23445  cnlnadjlem6  23580  adjlnop  23594  bra11  23616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvdistr2 22517  ax-hvmul0 22518  ax-hfi 22586  ax-his1 22589  ax-his2 22590  ax-his3 22591  ax-his4 22592
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-2 10063  df-cj 11909  df-re 11910  df-im 11911  df-hvsub 22479
  Copyright terms: Public domain W3C validator