Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicli Structured version   Unicode version

Theorem hicli 22575
 Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hicl.1
hicl.2
Assertion
Ref Expression
hicli

Proof of Theorem hicli
StepHypRef Expression
1 hicl.1 . 2
2 hicl.2 . 2
3 hicl 22574 . 2
41, 2, 3mp2an 654 1
 Colors of variables: wff set class Syntax hints:   wcel 1725  (class class class)co 6073  cc 8980  chil 22414   csp 22417 This theorem is referenced by:  hisubcomi  22598  normlem0  22603  normlem2  22605  normlem3  22606  normlem7  22610  normlem8  22611  normlem9  22612  bcseqi  22614  norm-ii-i  22631  normpythi  22636  normpari  22648  polid2i  22651  bcsiALT  22673  h1de2i  23047  h1de2bi  23048  h1de2ctlem  23049  eigrei  23329  eigorthi  23332  lnopunilem1  23505  lnopunilem2  23506 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-hfi 22573 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076
 Copyright terms: Public domain W3C validator