HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his35i Unicode version

Theorem his35i 21684
Description: Move scalar multiplication to outside of inner product. (Contributed by NM, 1-Jul-2005.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
his35.1  |-  A  e.  CC
his35.2  |-  B  e.  CC
his35.3  |-  C  e. 
~H
his35.4  |-  D  e. 
~H
Assertion
Ref Expression
his35i  |-  ( ( A  .h  C ) 
.ih  ( B  .h  D ) )  =  ( ( A  x.  ( * `  B
) )  x.  ( C  .ih  D ) )

Proof of Theorem his35i
StepHypRef Expression
1 his35.1 . 2  |-  A  e.  CC
2 his35.2 . 2  |-  B  e.  CC
3 his35.3 . 2  |-  C  e. 
~H
4 his35.4 . 2  |-  D  e. 
~H
5 his35 21683 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e. 
~H  /\  D  e.  ~H ) )  ->  (
( A  .h  C
)  .ih  ( B  .h  D ) )  =  ( ( A  x.  ( * `  B
) )  x.  ( C  .ih  D ) ) )
61, 2, 3, 4, 5mp4an 654 1  |-  ( ( A  .h  C ) 
.ih  ( B  .h  D ) )  =  ( ( A  x.  ( * `  B
) )  x.  ( C  .ih  D ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751    x. cmul 8758   *ccj 11597   ~Hchil 21515    .h csm 21517    .ih csp 21518
This theorem is referenced by:  hisubcomi  21699  norm-iii-i  21734  lnophmlem2  22613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-hfvmul 21601  ax-hfi 21674  ax-his1 21677  ax-his3 21679
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-cj 11600  df-re 11601  df-im 11602
  Copyright terms: Public domain W3C validator