Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl0lt1N Structured version   Unicode version

Theorem hl0lt1N 30261
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hl0lt1.s  |-  .<  =  ( lt `  K )
hl0lt1.z  |-  .0.  =  ( 0. `  K )
hl0lt1.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
hl0lt1N  |-  ( K  e.  HL  ->  .0.  .<  .1.  )

Proof of Theorem hl0lt1N
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 hl0lt1.s . . 3  |-  .<  =  ( lt `  K )
3 hl0lt1.z . . 3  |-  .0.  =  ( 0. `  K )
4 hl0lt1.u . . 3  |-  .1.  =  ( 1. `  K )
51, 2, 3, 4hlhgt2 30260 . 2  |-  ( K  e.  HL  ->  E. x  e.  ( Base `  K
) (  .0.  .<  x  /\  x  .<  .1.  )
)
6 hlpos 30237 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
76adantr 453 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  Poset )
8 hlop 30234 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
98adantr 453 . . . . 5  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  OP )
101, 3op0cl 30056 . . . . 5  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
119, 10syl 16 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  .0.  e.  ( Base `  K
) )
12 simpr 449 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  x  e.  ( Base `  K ) )
131, 4op1cl 30057 . . . . 5  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
149, 13syl 16 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  .1.  e.  ( Base `  K
) )
151, 2plttr 14432 . . . 4  |-  ( ( K  e.  Poset  /\  (  .0.  e.  ( Base `  K
)  /\  x  e.  ( Base `  K )  /\  .1.  e.  ( Base `  K ) ) )  ->  ( (  .0. 
.<  x  /\  x  .<  .1.  )  ->  .0.  .<  .1.  ) )
167, 11, 12, 14, 15syl13anc 1187 . . 3  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( (  .0.  .<  x  /\  x  .<  .1.  )  ->  .0.  .<  .1.  )
)
1716rexlimdva 2832 . 2  |-  ( K  e.  HL  ->  ( E. x  e.  ( Base `  K ) (  .0.  .<  x  /\  x  .<  .1.  )  ->  .0. 
.<  .1.  ) )
185, 17mpd 15 1  |-  ( K  e.  HL  ->  .0.  .<  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   class class class wbr 4215   ` cfv 5457   Basecbs 13474   Posetcpo 14402   ltcplt 14403   0.cp0 14471   1.cp1 14472   OPcops 30044   HLchlt 30222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-poset 14408  df-plt 14420  df-lat 14480  df-oposet 30048  df-ol 30050  df-oml 30051  df-atl 30170  df-cvlat 30194  df-hlat 30223
  Copyright terms: Public domain W3C validator