Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl0lt1N Unicode version

Theorem hl0lt1N 29504
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hl0lt1.s  |-  .<  =  ( lt `  K )
hl0lt1.z  |-  .0.  =  ( 0. `  K )
hl0lt1.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
hl0lt1N  |-  ( K  e.  HL  ->  .0.  .<  .1.  )

Proof of Theorem hl0lt1N
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2387 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 hl0lt1.s . . 3  |-  .<  =  ( lt `  K )
3 hl0lt1.z . . 3  |-  .0.  =  ( 0. `  K )
4 hl0lt1.u . . 3  |-  .1.  =  ( 1. `  K )
51, 2, 3, 4hlhgt2 29503 . 2  |-  ( K  e.  HL  ->  E. x  e.  ( Base `  K
) (  .0.  .<  x  /\  x  .<  .1.  )
)
6 hlpos 29480 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
76adantr 452 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  Poset )
8 hlop 29477 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
98adantr 452 . . . . 5  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  OP )
101, 3op0cl 29299 . . . . 5  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
119, 10syl 16 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  .0.  e.  ( Base `  K
) )
12 simpr 448 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  x  e.  ( Base `  K ) )
131, 4op1cl 29300 . . . . 5  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
149, 13syl 16 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  .1.  e.  ( Base `  K
) )
151, 2plttr 14354 . . . 4  |-  ( ( K  e.  Poset  /\  (  .0.  e.  ( Base `  K
)  /\  x  e.  ( Base `  K )  /\  .1.  e.  ( Base `  K ) ) )  ->  ( (  .0. 
.<  x  /\  x  .<  .1.  )  ->  .0.  .<  .1.  ) )
167, 11, 12, 14, 15syl13anc 1186 . . 3  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( (  .0.  .<  x  /\  x  .<  .1.  )  ->  .0.  .<  .1.  )
)
1716rexlimdva 2773 . 2  |-  ( K  e.  HL  ->  ( E. x  e.  ( Base `  K ) (  .0.  .<  x  /\  x  .<  .1.  )  ->  .0. 
.<  .1.  ) )
185, 17mpd 15 1  |-  ( K  e.  HL  ->  .0.  .<  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153   ` cfv 5394   Basecbs 13396   Posetcpo 14324   ltcplt 14325   0.cp0 14393   1.cp1 14394   OPcops 29287   HLchlt 29465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-ov 6023  df-poset 14330  df-plt 14342  df-lat 14402  df-oposet 29291  df-ol 29293  df-oml 29294  df-atl 29413  df-cvlat 29437  df-hlat 29466
  Copyright terms: Public domain W3C validator