Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatj4 Unicode version

Theorem hlatj4 30185
Description: Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 14223 for atoms. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
hlatjcom.j  |-  .\/  =  ( join `  K )
hlatjcom.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlatj4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( P 
.\/  R )  .\/  ( Q  .\/  S ) ) )

Proof of Theorem hlatj4
StepHypRef Expression
1 hllat 30175 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 976 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  Lat )
3 simp2l 981 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  A )
4 eqid 2296 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
5 hlatjcom.a . . . 4  |-  A  =  ( Atoms `  K )
64, 5atbase 30101 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
73, 6syl 15 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  ( Base `  K ) )
8 simp2r 982 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  A )
94, 5atbase 30101 . . 3  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
108, 9syl 15 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  ( Base `  K ) )
11 simp3l 983 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  A )
124, 5atbase 30101 . . 3  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1311, 12syl 15 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  ( Base `  K ) )
14 simp3r 984 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  A )
154, 5atbase 30101 . . 3  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1614, 15syl 15 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  ( Base `  K ) )
17 hlatjcom.j . . 3  |-  .\/  =  ( join `  K )
184, 17latj4 14223 . 2  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  R ) 
.\/  ( Q  .\/  S ) ) )
192, 7, 10, 13, 16, 18syl122anc 1191 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( P 
.\/  R )  .\/  ( Q  .\/  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   joincjn 14094   Latclat 14167   Atomscatm 30075   HLchlt 30162
This theorem is referenced by:  4atlem4b  30411  4atlem11  30420  dalem2  30472  dalem23  30507  cdleme16c  31091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-join 14126  df-lat 14168  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator