Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatlej2 Unicode version

Theorem hlatlej2 29565
Description: A join's second argument is less than or equal to the join. Special case of latlej2 14167 to show an atom is on a line. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
hlatlej.l  |-  .<_  =  ( le `  K )
hlatlej.j  |-  .\/  =  ( join `  K )
hlatlej.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlatlej2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )

Proof of Theorem hlatlej2
StepHypRef Expression
1 hlatlej.l . . . 4  |-  .<_  =  ( le `  K )
2 hlatlej.j . . . 4  |-  .\/  =  ( join `  K )
3 hlatlej.a . . . 4  |-  A  =  ( Atoms `  K )
41, 2, 3hlatlej1 29564 . . 3  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  P  e.  A )  ->  Q  .<_  ( Q  .\/  P ) )
543com23 1157 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( Q  .\/  P ) )
62, 3hlatjcom 29557 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
75, 6breqtrrd 4049 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  2llnne2N  29597  cvrat3  29631  cvrat4  29632  hlatexch3N  29669  hlatexch4  29670  dalem3  29853  dalem25  29887  lnatexN  29968  lncmp  29972  2llnma3r  29977  paddasslem5  30013  dalawlem3  30062  dalawlem6  30065  dalawlem7  30066  dalawlem12  30071  lhp2atne  30223  lhp2at0ne  30225  4atexlemunv  30255  cdlemc2  30381  cdlemc5  30384  cdleme3h  30424  cdleme7  30438  cdleme9  30442  cdleme11c  30450  cdleme11dN  30451  cdleme11j  30456  cdleme16b  30468  cdleme17b  30476  cdleme18a  30480  cdleme18b  30481  cdleme18c  30482  cdleme20y  30491  cdleme19a  30492  cdleme20d  30501  cdleme20j  30507  cdleme21ct  30518  cdleme22a  30529  cdleme22e  30533  cdleme22eALTN  30534  cdleme35b  30639  cdlemg9a  30821  cdlemg12a  30832  cdlemg13a  30840  cdlemg17a  30850  cdlemg17g  30856  cdlemg18c  30869  cdlemg33b0  30890  cdlemg46  30924  cdlemh1  31004  cdlemh  31006  cdlemk4  31023  cdlemki  31030  cdlemksv2  31036  cdlemk12  31039  cdlemk15  31044  cdlemk12u  31061  cdlemkid1  31111  dia2dimlem1  31254  dia2dimlem3  31256  cdlemn10  31396  dihjatcclem1  31608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-lub 14108  df-join 14110  df-lat 14152  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator