MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcmet Unicode version

Theorem hlcmet 21489
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x  |-  X  =  ( BaseSet `  U )
hlcmet.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
hlcmet  |-  ( U  e.  CHil OLD  ->  D  e.  ( CMet `  X
) )

Proof of Theorem hlcmet
StepHypRef Expression
1 hlobn 21483 . 2  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
2 hlcmet.x . . 3  |-  X  =  ( BaseSet `  U )
3 hlcmet.8 . . 3  |-  D  =  ( IndMet `  U )
42, 3cbncms 21460 . 2  |-  ( U  e.  CBan  ->  D  e.  ( CMet `  X
) )
51, 4syl 15 1  |-  ( U  e.  CHil OLD  ->  D  e.  ( CMet `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   ` cfv 5271   CMetcms 18696   BaseSetcba 21158   IndMetcims 21163   CBanccbn 21457   CHil
OLDchlo 21480
This theorem is referenced by:  hlmet  21490  hlcompl  21510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-cbn 21458  df-hlo 21481
  Copyright terms: Public domain W3C validator