Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexch1 Unicode version

Theorem hlexch1 29623
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b  |-  B  =  ( Base `  K
)
hlsuprexch.l  |-  .<_  =  ( le `  K )
hlsuprexch.j  |-  .\/  =  ( join `  K )
hlsuprexch.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlexch1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )

Proof of Theorem hlexch1
StepHypRef Expression
1 hlcvl 29601 . 2  |-  ( K  e.  HL  ->  K  e.  CvLat )
2 hlsuprexch.b . . 3  |-  B  =  ( Base `  K
)
3 hlsuprexch.l . . 3  |-  .<_  =  ( le `  K )
4 hlsuprexch.j . . 3  |-  .\/  =  ( join `  K )
5 hlsuprexch.a . . 3  |-  A  =  ( Atoms `  K )
62, 3, 4, 5cvlexch1 29570 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X 
.\/  P ) ) )
71, 6syl3an1 1215 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 934    = wceq 1642    e. wcel 1710   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   Basecbs 13239   lecple 13306   joincjn 14171   Atomscatm 29505   CvLatclc 29507   HLchlt 29592
This theorem is referenced by:  cvratlem  29662  4noncolr3  29694  3dimlem4a  29704  3dimlem4OLDN  29706  ps-2  29719  4atlem0a  29834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-iota 5298  df-fv 5342  df-ov 5945  df-cvlat 29564  df-hlat 29593
  Copyright terms: Public domain W3C validator