Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexch3 Structured version   Unicode version

Theorem hlexch3 30362
Description: A Hilbert lattice has the exchange property. (atexch 23922 analog.) (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
hlexch3.b  |-  B  =  ( Base `  K
)
hlexch3.l  |-  .<_  =  ( le `  K )
hlexch3.j  |-  .\/  =  ( join `  K )
hlexch3.m  |-  ./\  =  ( meet `  K )
hlexch3.z  |-  .0.  =  ( 0. `  K )
hlexch3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlexch3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  ./\ 
X )  =  .0.  )  ->  ( P  .<_  ( X  .\/  Q
)  ->  Q  .<_  ( X  .\/  P ) ) )

Proof of Theorem hlexch3
StepHypRef Expression
1 hlcvl 30331 . 2  |-  ( K  e.  HL  ->  K  e.  CvLat )
2 hlexch3.b . . 3  |-  B  =  ( Base `  K
)
3 hlexch3.l . . 3  |-  .<_  =  ( le `  K )
4 hlexch3.j . . 3  |-  .\/  =  ( join `  K )
5 hlexch3.m . . 3  |-  ./\  =  ( meet `  K )
6 hlexch3.z . . 3  |-  .0.  =  ( 0. `  K )
7 hlexch3.a . . 3  |-  A  =  ( Atoms `  K )
82, 3, 4, 5, 6, 7cvlexch3 30304 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )
91, 8syl3an1 1218 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  ./\ 
X )  =  .0.  )  ->  ( P  .<_  ( X  .\/  Q
)  ->  Q  .<_  ( X  .\/  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1654    e. wcel 1728   class class class wbr 4243   ` cfv 5489  (class class class)co 6117   Basecbs 13507   lecple 13574   joincjn 14439   meetcmee 14440   0.cp0 14504   Atomscatm 30235   CvLatclc 30237   HLchlt 30322
This theorem is referenced by:  cvrat4  30414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-undef 6579  df-riota 6585  df-poset 14441  df-plt 14453  df-glb 14470  df-meet 14472  df-p0 14506  df-lat 14513  df-covers 30238  df-ats 30239  df-atl 30270  df-cvlat 30294  df-hlat 30323
  Copyright terms: Public domain W3C validator