Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexch3 Unicode version

Theorem hlexch3 29885
Description: A Hilbert lattice has the exchange property. (atexch 23845 analog.) (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
hlexch3.b  |-  B  =  ( Base `  K
)
hlexch3.l  |-  .<_  =  ( le `  K )
hlexch3.j  |-  .\/  =  ( join `  K )
hlexch3.m  |-  ./\  =  ( meet `  K )
hlexch3.z  |-  .0.  =  ( 0. `  K )
hlexch3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlexch3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  ./\ 
X )  =  .0.  )  ->  ( P  .<_  ( X  .\/  Q
)  ->  Q  .<_  ( X  .\/  P ) ) )

Proof of Theorem hlexch3
StepHypRef Expression
1 hlcvl 29854 . 2  |-  ( K  e.  HL  ->  K  e.  CvLat )
2 hlexch3.b . . 3  |-  B  =  ( Base `  K
)
3 hlexch3.l . . 3  |-  .<_  =  ( le `  K )
4 hlexch3.j . . 3  |-  .\/  =  ( join `  K )
5 hlexch3.m . . 3  |-  ./\  =  ( meet `  K )
6 hlexch3.z . . 3  |-  .0.  =  ( 0. `  K )
7 hlexch3.a . . 3  |-  A  =  ( Atoms `  K )
82, 3, 4, 5, 6, 7cvlexch3 29827 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )
91, 8syl3an1 1217 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  ./\ 
X )  =  .0.  )  ->  ( P  .<_  ( X  .\/  Q
)  ->  Q  .<_  ( X  .\/  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   Basecbs 13432   lecple 13499   joincjn 14364   meetcmee 14365   0.cp0 14429   Atomscatm 29758   CvLatclc 29760   HLchlt 29845
This theorem is referenced by:  cvrat4  29937
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-glb 14395  df-meet 14397  df-p0 14431  df-lat 14438  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846
  Copyright terms: Public domain W3C validator