Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Structured version   Unicode version

Theorem hlhgt2 30248
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b  |-  B  =  ( Base `  K
)
hlhgt4.s  |-  .<  =  ( lt `  K )
hlhgt4.z  |-  .0.  =  ( 0. `  K )
hlhgt4.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
hlhgt2  |-  ( K  e.  HL  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
)
Distinct variable groups:    x, B    x, K
Allowed substitution hints:    .< ( x)    .1. ( x)    .0. (
x)

Proof of Theorem hlhgt2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3  |-  B  =  ( Base `  K
)
2 hlhgt4.s . . 3  |-  .<  =  ( lt `  K )
3 hlhgt4.z . . 3  |-  .0.  =  ( 0. `  K )
4 hlhgt4.u . . 3  |-  .1.  =  ( 1. `  K )
51, 2, 3, 4hlhgt4 30247 . 2  |-  ( K  e.  HL  ->  E. y  e.  B  E. x  e.  B  E. z  e.  B  ( (  .0.  .<  y  /\  y  .<  x )  /\  (
x  .<  z  /\  z  .<  .1.  ) ) )
6 hlpos 30225 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Poset )
76ad3antrrr 712 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  K  e.  Poset )
8 hlop 30222 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
98ad3antrrr 712 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  K  e.  OP )
101, 3op0cl 30044 . . . . . . . 8  |-  ( K  e.  OP  ->  .0.  e.  B )
119, 10syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  .0.  e.  B )
12 simpllr 737 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  y  e.  B )
13 simplr 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  x  e.  B )
141, 2plttr 14429 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (  .0.  e.  B  /\  y  e.  B  /\  x  e.  B ) )  -> 
( (  .0.  .<  y  /\  y  .<  x
)  ->  .0.  .<  x
) )
157, 11, 12, 13, 14syl13anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
(  .0.  .<  y  /\  y  .<  x )  ->  .0.  .<  x ) )
16 simpr 449 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  z  e.  B )
171, 4op1cl 30045 . . . . . . . 8  |-  ( K  e.  OP  ->  .1.  e.  B )
189, 17syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  .1.  e.  B )
191, 2plttr 14429 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  z  e.  B  /\  .1.  e.  B ) )  ->  ( ( x 
.<  z  /\  z  .<  .1.  )  ->  x  .<  .1.  ) )
207, 13, 16, 18, 19syl13anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
( x  .<  z  /\  z  .<  .1.  )  ->  x  .<  .1.  )
)
2115, 20anim12d 548 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
( (  .0.  .<  y  /\  y  .<  x
)  /\  ( x  .<  z  /\  z  .<  .1.  ) )  ->  (  .0.  .<  x  /\  x  .<  .1.  ) ) )
2221rexlimdva 2832 . . . 4  |-  ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B
)  ->  ( E. z  e.  B  (
(  .0.  .<  y  /\  y  .<  x )  /\  ( x  .<  z  /\  z  .<  .1.  )
)  ->  (  .0.  .<  x  /\  x  .<  .1.  )
) )
2322reximdva 2820 . . 3  |-  ( ( K  e.  HL  /\  y  e.  B )  ->  ( E. x  e.  B  E. z  e.  B  ( (  .0. 
.<  y  /\  y  .<  x )  /\  (
x  .<  z  /\  z  .<  .1.  ) )  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  ) )
)
2423rexlimdva 2832 . 2  |-  ( K  e.  HL  ->  ( E. y  e.  B  E. x  e.  B  E. z  e.  B  ( (  .0.  .<  y  /\  y  .<  x
)  /\  ( x  .<  z  /\  z  .<  .1.  ) )  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
) )
255, 24mpd 15 1  |-  ( K  e.  HL  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   class class class wbr 4214   ` cfv 5456   Basecbs 13471   Posetcpo 14399   ltcplt 14400   0.cp0 14468   1.cp1 14469   OPcops 30032   HLchlt 30210
This theorem is referenced by:  hl0lt1N  30249  hl2at  30264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-ov 6086  df-poset 14405  df-plt 14417  df-lat 14477  df-oposet 30036  df-ol 30038  df-oml 30039  df-atl 30158  df-cvlat 30182  df-hlat 30211
  Copyright terms: Public domain W3C validator