Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhillcs Unicode version

Theorem hlhillcs 32203
Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 32181 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.)
Hypotheses
Ref Expression
hlhillcs.h  |-  H  =  ( LHyp `  K
)
hlhillcs.i  |-  I  =  ( ( DIsoH `  K
) `  W )
hlhillcs.u  |-  U  =  ( (HLHil `  K
) `  W )
hlhillcs.c  |-  C  =  ( CSubSp `  U )
hlhillcs.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
hlhillcs  |-  ( ph  ->  C  =  ran  I
)

Proof of Theorem hlhillcs
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hlhillcs.u . . . . . . 7  |-  U  =  ( (HLHil `  K
) `  W )
2 fvex 5619 . . . . . . 7  |-  ( (HLHil `  K ) `  W
)  e.  _V
31, 2eqeltri 2428 . . . . . 6  |-  U  e. 
_V
4 eqid 2358 . . . . . . 7  |-  ( ocv `  U )  =  ( ocv `  U )
5 hlhillcs.c . . . . . . 7  |-  C  =  ( CSubSp `  U )
64, 5iscss 16683 . . . . . 6  |-  ( U  e.  _V  ->  (
x  e.  C  <->  x  =  ( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) ) ) )
73, 6mp1i 11 . . . . 5  |-  ( ph  ->  ( x  e.  C  <->  x  =  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
) ) )
87biimpa 470 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  x  =  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
) )
9 eqid 2358 . . . . . 6  |-  ( Base `  U )  =  (
Base `  U )
109, 5cssss 16685 . . . . 5  |-  ( x  e.  C  ->  x  C_  ( Base `  U
) )
11 hlhillcs.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
12 hlhillcs.i . . . . . . 7  |-  I  =  ( ( DIsoH `  K
) `  W )
13 eqid 2358 . . . . . . 7  |-  ( (
DVecH `  K ) `  W )  =  ( ( DVecH `  K ) `  W )
14 eqid 2358 . . . . . . 7  |-  ( Base `  ( ( DVecH `  K
) `  W )
)  =  ( Base `  ( ( DVecH `  K
) `  W )
)
15 eqid 2358 . . . . . . 7  |-  ( ( ocH `  K ) `
 W )  =  ( ( ocH `  K
) `  W )
16 hlhillcs.k . . . . . . . 8  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1716adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
1811, 1, 16, 13, 14hlhilbase 32181 . . . . . . . . 9  |-  ( ph  ->  ( Base `  (
( DVecH `  K ) `  W ) )  =  ( Base `  U
) )
1918sseq2d 3282 . . . . . . . 8  |-  ( ph  ->  ( x  C_  ( Base `  ( ( DVecH `  K ) `  W
) )  <->  x  C_  ( Base `  U ) ) )
2019biimpar 471 . . . . . . 7  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  x  C_  ( Base `  ( ( DVecH `  K ) `  W
) ) )
2111, 12, 13, 14, 15, 17, 20dochoccl 31611 . . . . . 6  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( x  e. 
ran  I  <->  ( (
( ocH `  K
) `  W ) `  ( ( ( ocH `  K ) `  W
) `  x )
)  =  x ) )
22 eqcom 2360 . . . . . . 7  |-  ( x  =  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
)  <->  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
)  =  x )
2311, 13, 1, 17, 14, 15, 4, 20hlhilocv 32202 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ocv `  U ) `  x
)  =  ( ( ( ocH `  K
) `  W ) `  x ) )
2423fveq2d 5609 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
)  =  ( ( ocv `  U ) `
 ( ( ( ocH `  K ) `
 W ) `  x ) ) )
2511, 13, 14, 15dochssv 31597 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  C_  ( Base `  ( ( DVecH `  K ) `  W
) ) )  -> 
( ( ( ocH `  K ) `  W
) `  x )  C_  ( Base `  (
( DVecH `  K ) `  W ) ) )
2617, 20, 25syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ( ocH `  K ) `
 W ) `  x )  C_  ( Base `  ( ( DVecH `  K ) `  W
) ) )
2711, 13, 1, 17, 14, 15, 4, 26hlhilocv 32202 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ocv `  U ) `  (
( ( ocH `  K
) `  W ) `  x ) )  =  ( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) ) )
2824, 27eqtrd 2390 . . . . . . . 8  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
)  =  ( ( ( ocH `  K
) `  W ) `  ( ( ( ocH `  K ) `  W
) `  x )
) )
2928eqeq1d 2366 . . . . . . 7  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( ( ( ocv `  U ) `
 ( ( ocv `  U ) `  x
) )  =  x  <-> 
( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) )  =  x ) )
3022, 29syl5bb 248 . . . . . 6  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( x  =  ( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) )  <->  ( (
( ocH `  K
) `  W ) `  ( ( ( ocH `  K ) `  W
) `  x )
)  =  x ) )
3121, 30bitr4d 247 . . . . 5  |-  ( (
ph  /\  x  C_  ( Base `  U ) )  ->  ( x  e. 
ran  I  <->  x  =  ( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) ) ) )
3210, 31sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  ran  I  <->  x  =  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
) ) )
338, 32mpbird 223 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  ran  I )
34 simpr 447 . . . 4  |-  ( (
ph  /\  x  e.  ran  I )  ->  x  e.  ran  I )
3516adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ran  I )  ->  ( K  e.  HL  /\  W  e.  H ) )
3611, 13, 12, 14dihrnss 31520 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  ran  I )  ->  x  C_  ( Base `  (
( DVecH `  K ) `  W ) ) )
3716, 36sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ran  I )  ->  x  C_  ( Base `  (
( DVecH `  K ) `  W ) ) )
3811, 13, 1, 35, 14, 15, 4, 37hlhilocv 32202 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ocv `  U
) `  x )  =  ( ( ( ocH `  K ) `
 W ) `  x ) )
3938fveq2d 5609 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ocv `  U
) `  ( ( ocv `  U ) `  x ) )  =  ( ( ocv `  U
) `  ( (
( ocH `  K
) `  W ) `  x ) ) )
4035, 37, 25syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ( ocH `  K
) `  W ) `  x )  C_  ( Base `  ( ( DVecH `  K ) `  W
) ) )
4111, 13, 1, 35, 14, 15, 4, 40hlhilocv 32202 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ocv `  U
) `  ( (
( ocH `  K
) `  W ) `  x ) )  =  ( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) ) )
4239, 41eqtrd 2390 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ocv `  U
) `  ( ( ocv `  U ) `  x ) )  =  ( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) ) )
4342eqeq1d 2366 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) )  =  x  <->  ( ( ( ocH `  K ) `
 W ) `  ( ( ( ocH `  K ) `  W
) `  x )
)  =  x ) )
4443biimpar 471 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  I )  /\  ( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) )  =  x )  ->  (
( ocv `  U
) `  ( ( ocv `  U ) `  x ) )  =  x )
4544eqcomd 2363 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ran  I )  /\  ( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) )  =  x )  ->  x  =  ( ( ocv `  U ) `  (
( ocv `  U
) `  x )
) )
4645ex 423 . . . . 5  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
( ( ( ocH `  K ) `  W
) `  ( (
( ocH `  K
) `  W ) `  x ) )  =  x  ->  x  =  ( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) ) ) )
4711, 12, 13, 14, 15, 35, 37dochoccl 31611 . . . . 5  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
x  e.  ran  I  <->  ( ( ( ocH `  K
) `  W ) `  ( ( ( ocH `  K ) `  W
) `  x )
)  =  x ) )
483, 6mp1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
x  e.  C  <->  x  =  ( ( ocv `  U
) `  ( ( ocv `  U ) `  x ) ) ) )
4946, 47, 483imtr4d 259 . . . 4  |-  ( (
ph  /\  x  e.  ran  I )  ->  (
x  e.  ran  I  ->  x  e.  C ) )
5034, 49mpd 14 . . 3  |-  ( (
ph  /\  x  e.  ran  I )  ->  x  e.  C )
5133, 50impbida 805 . 2  |-  ( ph  ->  ( x  e.  C  <->  x  e.  ran  I ) )
5251eqrdv 2356 1  |-  ( ph  ->  C  =  ran  I
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864    C_ wss 3228   ran crn 4769   ` cfv 5334   Basecbs 13239   ocvcocv 16660   CSubSpccss 16661   HLchlt 29592   LHypclh 30225   DVecHcdvh 31320   DIsoHcdih 31470   ocHcoch 31589  HLHilchlh 32177
This theorem is referenced by:  hlhilhillem  32205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-fal 1320  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-ot 3726  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-1st 6206  df-2nd 6207  df-tpos 6318  df-undef 6382  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-n0 10055  df-z 10114  df-uz 10320  df-fz 10872  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-sca 13315  df-vsca 13316  df-ip 13317  df-0g 13497  df-mre 13581  df-mrc 13582  df-acs 13584  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-p1 14239  df-lat 14245  df-clat 14307  df-mnd 14460  df-submnd 14509  df-grp 14582  df-minusg 14583  df-sbg 14584  df-subg 14711  df-cntz 14886  df-oppg 14912  df-lsm 15040  df-cmn 15184  df-abl 15185  df-mgp 15419  df-rng 15433  df-ur 15435  df-oppr 15498  df-dvdsr 15516  df-unit 15517  df-invr 15547  df-dvr 15558  df-drng 15607  df-lmod 15722  df-lss 15783  df-lsp 15822  df-lvec 15949  df-ocv 16663  df-css 16664  df-lsatoms 29218  df-lshyp 29219  df-lcv 29261  df-lfl 29300  df-lkr 29328  df-ldual 29366  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740  df-lvols 29741  df-lines 29742  df-psubsp 29744  df-pmap 29745  df-padd 30037  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400  df-tgrp 30984  df-tendo 30996  df-edring 30998  df-dveca 31244  df-disoa 31271  df-dvech 31321  df-dib 31381  df-dic 31415  df-dih 31471  df-doch 31590  df-djh 31637  df-lcdual 31829  df-mapd 31867  df-hvmap 31999  df-hdmap1 32036  df-hdmap 32037  df-hlhil 32178
  Copyright terms: Public domain W3C validator