Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhillvec Unicode version

Theorem hlhillvec 32213
Description: The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
hlhillvec.h  |-  H  =  ( LHyp `  K
)
hlhillvec.u  |-  U  =  ( (HLHil `  K
) `  W )
hlhillvec.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
hlhillvec  |-  ( ph  ->  U  e.  LVec )

Proof of Theorem hlhillvec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhillvec.h . . 3  |-  H  =  ( LHyp `  K
)
2 eqid 2358 . . 3  |-  ( (
DVecH `  K ) `  W )  =  ( ( DVecH `  K ) `  W )
3 hlhillvec.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlvec 31368 . 2  |-  ( ph  ->  ( ( DVecH `  K
) `  W )  e.  LVec )
5 eqidd 2359 . . 3  |-  ( ph  ->  ( Base `  (
( DVecH `  K ) `  W ) )  =  ( Base `  (
( DVecH `  K ) `  W ) ) )
6 hlhillvec.u . . . 4  |-  U  =  ( (HLHil `  K
) `  W )
7 eqid 2358 . . . 4  |-  ( Base `  ( ( DVecH `  K
) `  W )
)  =  ( Base `  ( ( DVecH `  K
) `  W )
)
81, 6, 3, 2, 7hlhilbase 32198 . . 3  |-  ( ph  ->  ( Base `  (
( DVecH `  K ) `  W ) )  =  ( Base `  U
) )
9 eqid 2358 . . 3  |-  (Scalar `  ( ( DVecH `  K
) `  W )
)  =  (Scalar `  ( ( DVecH `  K
) `  W )
)
10 eqid 2358 . . 3  |-  (Scalar `  U )  =  (Scalar `  U )
11 eqidd 2359 . . 3  |-  ( ph  ->  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  =  (
Base `  (Scalar `  (
( DVecH `  K ) `  W ) ) ) )
12 eqid 2358 . . . 4  |-  ( Base `  (Scalar `  ( ( DVecH `  K ) `  W ) ) )  =  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )
131, 2, 9, 6, 10, 3, 12hlhilsbase2 32204 . . 3  |-  ( ph  ->  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  =  (
Base `  (Scalar `  U
) ) )
14 eqid 2358 . . . . 5  |-  ( +g  `  ( ( DVecH `  K
) `  W )
)  =  ( +g  `  ( ( DVecH `  K
) `  W )
)
151, 6, 3, 2, 14hlhilplus 32199 . . . 4  |-  ( ph  ->  ( +g  `  (
( DVecH `  K ) `  W ) )  =  ( +g  `  U
) )
1615proplem3 13692 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  (
( DVecH `  K ) `  W ) )  /\  y  e.  ( Base `  ( ( DVecH `  K
) `  W )
) ) )  -> 
( x ( +g  `  ( ( DVecH `  K
) `  W )
) y )  =  ( x ( +g  `  U ) y ) )
17 eqid 2358 . . . . 5  |-  ( +g  `  (Scalar `  ( ( DVecH `  K ) `  W ) ) )  =  ( +g  `  (Scalar `  ( ( DVecH `  K
) `  W )
) )
181, 2, 9, 6, 10, 3, 17hlhilsplus2 32205 . . . 4  |-  ( ph  ->  ( +g  `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  =  ( +g  `  (Scalar `  U ) ) )
1918proplem3 13692 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  /\  y  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) ) ) )  ->  ( x ( +g  `  (Scalar `  ( ( DVecH `  K
) `  W )
) ) y )  =  ( x ( +g  `  (Scalar `  U ) ) y ) )
20 eqid 2358 . . . . 5  |-  ( .r
`  (Scalar `  ( ( DVecH `  K ) `  W ) ) )  =  ( .r `  (Scalar `  ( ( DVecH `  K ) `  W
) ) )
211, 2, 9, 6, 10, 3, 20hlhilsmul2 32206 . . . 4  |-  ( ph  ->  ( .r `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  =  ( .r `  (Scalar `  U ) ) )
2221proplem3 13692 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  /\  y  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) ) ) )  ->  ( x ( .r `  (Scalar `  ( ( DVecH `  K
) `  W )
) ) y )  =  ( x ( .r `  (Scalar `  U ) ) y ) )
23 eqid 2358 . . . . 5  |-  ( .s
`  ( ( DVecH `  K ) `  W
) )  =  ( .s `  ( (
DVecH `  K ) `  W ) )
241, 2, 23, 6, 3hlhilvsca 32209 . . . 4  |-  ( ph  ->  ( .s `  (
( DVecH `  K ) `  W ) )  =  ( .s `  U
) )
2524proplem3 13692 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  W )
) )  /\  y  e.  ( Base `  (
( DVecH `  K ) `  W ) ) ) )  ->  ( x
( .s `  (
( DVecH `  K ) `  W ) ) y )  =  ( x ( .s `  U
) y ) )
265, 8, 9, 10, 11, 13, 16, 19, 22, 25lvecprop2d 16018 . 2  |-  ( ph  ->  ( ( ( DVecH `  K ) `  W
)  e.  LVec  <->  U  e.  LVec ) )
274, 26mpbid 201 1  |-  ( ph  ->  U  e.  LVec )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   ` cfv 5337   Basecbs 13245   +g cplusg 13305   .rcmulr 13306  Scalarcsca 13308   .scvsca 13309   LVecclvec 15954   HLchlt 29609   LHypclh 30242   DVecHcdvh 31337  HLHilchlh 32194
This theorem is referenced by:  hlhilphllem  32221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-fal 1320  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-tpos 6321  df-undef 6385  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-ip 13323  df-0g 13503  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-mnd 14466  df-grp 14588  df-minusg 14589  df-mgp 15425  df-rng 15439  df-ur 15441  df-oppr 15504  df-dvdsr 15522  df-unit 15523  df-invr 15553  df-dvr 15564  df-drng 15613  df-lmod 15728  df-lvec 15955  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417  df-tendo 31013  df-edring 31015  df-dvech 31338  df-hlhil 32195
  Copyright terms: Public domain W3C validator