Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilslem Unicode version

Theorem hlhilslem 32131
Description: Lemma for hlhilsbase2 32135. (Contributed by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilslem.h  |-  H  =  ( LHyp `  K
)
hlhilslem.e  |-  E  =  ( ( EDRing `  K
) `  W )
hlhilslem.u  |-  U  =  ( (HLHil `  K
) `  W )
hlhilslem.r  |-  R  =  (Scalar `  U )
hlhilslem.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hlhilslem.f  |-  F  = Slot 
N
hlhilslem.1  |-  N  e.  NN
hlhilslem.2  |-  N  <  4
hlhilslem.c  |-  C  =  ( F `  E
)
Assertion
Ref Expression
hlhilslem  |-  ( ph  ->  C  =  ( F `
 R ) )

Proof of Theorem hlhilslem
StepHypRef Expression
1 hlhilslem.c . . 3  |-  C  =  ( F `  E
)
2 hlhilslem.f . . . . 5  |-  F  = Slot 
N
3 hlhilslem.1 . . . . 5  |-  N  e.  NN
42, 3ndxid 13169 . . . 4  |-  F  = Slot  ( F `  ndx )
53nnrei 9755 . . . . . 6  |-  N  e.  RR
6 hlhilslem.2 . . . . . 6  |-  N  <  4
75, 6ltneii 8931 . . . . 5  |-  N  =/=  4
82, 3ndxarg 13168 . . . . . 6  |-  ( F `
 ndx )  =  N
9 starvndx 13259 . . . . . 6  |-  ( * r `  ndx )  =  4
108, 9neeq12i 2458 . . . . 5  |-  ( ( F `  ndx )  =/=  ( * r `  ndx )  <->  N  =/=  4
)
117, 10mpbir 200 . . . 4  |-  ( F `
 ndx )  =/=  ( * r `  ndx )
124, 11setsnid 13188 . . 3  |-  ( F `
 E )  =  ( F `  ( E sSet  <. ( * r `
 ndx ) ,  ( (HGMap `  K
) `  W ) >. ) )
131, 12eqtri 2303 . 2  |-  C  =  ( F `  ( E sSet  <. ( * r `
 ndx ) ,  ( (HGMap `  K
) `  W ) >. ) )
14 hlhilslem.h . . . . 5  |-  H  =  ( LHyp `  K
)
15 hlhilslem.u . . . . 5  |-  U  =  ( (HLHil `  K
) `  W )
16 hlhilslem.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
17 hlhilslem.e . . . . 5  |-  E  =  ( ( EDRing `  K
) `  W )
18 eqid 2283 . . . . 5  |-  ( (HGMap `  K ) `  W
)  =  ( (HGMap `  K ) `  W
)
19 eqid 2283 . . . . 5  |-  ( E sSet  <. ( * r `  ndx ) ,  ( (HGMap `  K ) `  W
) >. )  =  ( E sSet  <. ( * r `
 ndx ) ,  ( (HGMap `  K
) `  W ) >. )
2014, 15, 16, 17, 18, 19hlhilsca 32128 . . . 4  |-  ( ph  ->  ( E sSet  <. (
* r `  ndx ) ,  ( (HGMap `  K ) `  W
) >. )  =  (Scalar `  U ) )
21 hlhilslem.r . . . 4  |-  R  =  (Scalar `  U )
2220, 21syl6eqr 2333 . . 3  |-  ( ph  ->  ( E sSet  <. (
* r `  ndx ) ,  ( (HGMap `  K ) `  W
) >. )  =  R )
2322fveq2d 5529 . 2  |-  ( ph  ->  ( F `  ( E sSet  <. ( * r `
 ndx ) ,  ( (HGMap `  K
) `  W ) >. ) )  =  ( F `  R ) )
2413, 23syl5eq 2327 1  |-  ( ph  ->  C  =  ( F `
 R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   <.cop 3643   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    < clt 8867   NNcn 9746   4c4 9797   ndxcnx 13145   sSet csts 13146  Slot cslot 13147   * rcstv 13210  Scalarcsca 13211   HLchlt 29540   LHypclh 30173   EDRingcedring 30942  HGMapchg 32076  HLHilchlh 32125
This theorem is referenced by:  hlhilsbase  32132  hlhilsplus  32133  hlhilsmul  32134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-starv 13223  df-sca 13224  df-vsca 13225  df-ip 13226  df-hlhil 32126
  Copyright terms: Public domain W3C validator