HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimconvi Unicode version

Theorem hlimconvi 22541
Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1  |-  A  e. 
_V
Assertion
Ref Expression
hlimconvi  |-  ( ( F  ~~>v  A  /\  B  e.  RR+ )  ->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  z )  -h  A ) )  < 
B )
Distinct variable groups:    y, z, F    y, A, z    y, B, z

Proof of Theorem hlimconvi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hlim.1 . . . 4  |-  A  e. 
_V
21hlimi 22538 . . 3  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
32simprbi 451 . 2  |-  ( F 
~~>v  A  ->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  z )  -h  A ) )  < 
x )
4 breq2 4157 . . . 4  |-  ( x  =  B  ->  (
( normh `  ( ( F `  z )  -h  A ) )  < 
x  <->  ( normh `  (
( F `  z
)  -h  A ) )  <  B ) )
54rexralbidv 2693 . . 3  |-  ( x  =  B  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  B
) )
65rspccva 2994 . 2  |-  ( ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x  /\  B  e.  RR+ )  ->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  B
)
73, 6sylan 458 1  |-  ( ( F  ~~>v  A  /\  B  e.  RR+ )  ->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  z )  -h  A ) )  < 
B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   _Vcvv 2899   class class class wbr 4153   -->wf 5390   ` cfv 5394  (class class class)co 6020    < clt 9053   NNcn 9932   ZZ>=cuz 10420   RR+crp 10544   ~Hchil 22270   normhcno 22274    -h cmv 22276    ~~>v chli 22278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-i2m1 8991  ax-1ne0 8992  ax-rrecex 8995  ax-cnre 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-recs 6569  df-rdg 6604  df-nn 9933  df-hlim 22323
  Copyright terms: Public domain W3C validator