HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimveci Unicode version

Theorem hlimveci 21769
Description: Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1  |-  A  e. 
_V
Assertion
Ref Expression
hlimveci  |-  ( F 
~~>v  A  ->  A  e.  ~H )

Proof of Theorem hlimveci
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlim.1 . . . 4  |-  A  e. 
_V
21hlimi 21767 . . 3  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
32simplbi 446 . 2  |-  ( F 
~~>v  A  ->  ( F : NN --> ~H  /\  A  e. 
~H ) )
43simprd 449 1  |-  ( F 
~~>v  A  ->  A  e.  ~H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858    < clt 8867   NNcn 9746   ZZ>=cuz 10230   RR+crp 10354   ~Hchil 21499   normhcno 21503    -h cmv 21505    ~~>v chli 21507
This theorem is referenced by:  hlimf  21817  helch  21823  occllem  21882  nlelchi  22641  hmopidmchi  22731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-nn 9747  df-hlim 21552
  Copyright terms: Public domain W3C validator