Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Unicode version

Theorem hlmod1i 30045
Description: A version of the modular law pmod1i 30037 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b  |-  B  =  ( Base `  K
)
hlmod.l  |-  .<_  =  ( le `  K )
hlmod.j  |-  .\/  =  ( join `  K )
hlmod.m  |-  ./\  =  ( meet `  K )
hlmod.f  |-  F  =  ( pmap `  K
)
hlmod.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
hlmod1i  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3  |-  B  =  ( Base `  K
)
2 hlmod.l . . 3  |-  .<_  =  ( le `  K )
3 hllat 29553 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 976 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  Lat )
5 simp21 988 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  e.  B )
6 simp22 989 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Y  e.  B )
7 hlmod.j . . . . . 6  |-  .\/  =  ( join `  K )
81, 7latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
94, 5, 6, 8syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  Y )  e.  B
)
10 simp23 990 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Z  e.  B )
11 hlmod.m . . . . 5  |-  ./\  =  ( meet `  K )
121, 11latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
134, 9, 10, 12syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  e.  B )
141, 11latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
154, 6, 10, 14syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( Y  ./\ 
Z )  e.  B
)
161, 7latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( X  .\/  ( Y  ./\  Z ) )  e.  B )
174, 5, 15, 16syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  e.  B
)
18 simp1 955 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  HL )
19 eqid 2283 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
20 hlmod.f . . . . . . . . 9  |-  F  =  ( pmap `  K
)
211, 19, 20pmapssat 29948 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
2218, 5, 21syl2anc 642 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( Atoms `  K ) )
231, 19, 20pmapssat 29948 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
2418, 6, 23syl2anc 642 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Y )  C_  ( Atoms `  K ) )
25 eqid 2283 . . . . . . . . 9  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
261, 25, 20pmapsub 29957 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Z  e.  B )  ->  ( F `  Z
)  e.  ( PSubSp `  K ) )
274, 10, 26syl2anc 642 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Z )  e.  (
PSubSp `  K ) )
28 simp3l 983 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  .<_  Z )
291, 2, 20pmaple 29950 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3018, 5, 10, 29syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3128, 30mpbid 201 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( F `  Z )
)
32 hlmod.p . . . . . . . . 9  |-  .+  =  ( + P `  K
)
3319, 25, 32pmod1i 30037 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) ) )  ->  ( ( F `  X )  C_  ( F `  Z
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) ) )
34333impia 1148 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) )  /\  ( F `  X )  C_  ( F `  Z )
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
3518, 22, 24, 27, 31, 34syl131anc 1195 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
361, 11, 19, 20pmapmeet 29962 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z ) )  =  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z ) ) )
3718, 9, 10, 36syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  ( X 
.\/  Y ) )  i^i  ( F `  Z ) ) )
38 simp3r 984 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( X  .\/  Y
) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) )
3938ineq1d 3369 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z
) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) ) )
4037, 39eqtrd 2315 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
411, 11, 19, 20pmapmeet 29962 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( F `  ( Y  ./\  Z ) )  =  ( ( F `
 Y )  i^i  ( F `  Z
) ) )
4218, 6, 10, 41syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( Y  ./\  Z
) )  =  ( ( F `  Y
)  i^i  ( F `  Z ) ) )
4342oveq2d 5874 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  =  ( ( F `  X ) 
.+  ( ( F `
 Y )  i^i  ( F `  Z
) ) ) )
4435, 40, 433eqtr4d 2325 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  X ) 
.+  ( F `  ( Y  ./\  Z ) ) ) )
451, 7, 20, 32pmapjoin 30041 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( ( F `  X )  .+  ( F `  ( Y  ./\ 
Z ) ) ) 
C_  ( F `  ( X  .\/  ( Y 
./\  Z ) ) ) )
464, 5, 15, 45syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
4744, 46eqsstrd 3212 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
481, 2, 20pmaple 29950 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  ( X  .\/  ( Y  ./\  Z ) )  e.  B
)  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
4918, 13, 17, 48syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
5047, 49mpbird 223 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z
) ) )
511, 2, 7, 11mod1ile 14211 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
52513impia 1148 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
534, 5, 6, 10, 28, 52syl131anc 1195 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
541, 2, 4, 13, 17, 50, 53latasymd 14163 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  =  ( X 
.\/  ( Y  ./\  Z ) ) )
55543expia 1153 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   PSubSpcpsubsp 29685   pmapcpmap 29686   + Pcpadd 29984
This theorem is referenced by:  atmod1i1  30046  atmod1i2  30048  llnmod1i2  30049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985
  Copyright terms: Public domain W3C validator