MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlobn Unicode version

Theorem hlobn 22238
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlobn  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )

Proof of Theorem hlobn
StepHypRef Expression
1 ishlo 22237 . 2  |-  ( U  e.  CHil OLD  <->  ( U  e. 
CBan  /\  U  e.  CPreHil OLD ) )
21simplbi 447 1  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   CPreHil OLDccphlo 22161   CBanccbn 22212   CHil
OLDchlo 22235
This theorem is referenced by:  hlrel  22240  hlnv  22241  hlcmet  22244  htthlem  22268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-in 3270  df-hlo 22236
  Copyright terms: Public domain W3C validator