Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmcv Unicode version

Theorem hlomcmcv 30168
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmcv  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )

Proof of Theorem hlomcmcv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2296 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2296 . . 3  |-  ( lt
`  K )  =  ( lt `  K
)
4 eqid 2296 . . 3  |-  ( join `  K )  =  (
join `  K )
5 eqid 2296 . . 3  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 eqid 2296 . . 3  |-  ( 1.
`  K )  =  ( 1. `  K
)
7 eqid 2296 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
81, 2, 3, 4, 5, 6, 7ishlat1 30164 . 2  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  ( A. x  e.  ( Atoms `  K ) A. y  e.  ( Atoms `  K )
( x  =/=  y  ->  E. z  e.  (
Atoms `  K ) ( z  =/=  x  /\  z  =/=  y  /\  z
( le `  K
) ( x (
join `  K )
y ) ) )  /\  E. x  e.  ( Base `  K
) E. y  e.  ( Base `  K
) E. z  e.  ( Base `  K
) ( ( ( 0. `  K ) ( lt `  K
) x  /\  x
( lt `  K
) y )  /\  ( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) ) ) ) ) )
98simplbi 446 1  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   ltcplt 14091   joincjn 14094   0.cp0 14159   1.cp1 14160   CLatccla 14229   OMLcoml 29987   Atomscatm 30075   CvLatclc 30077   HLchlt 30162
This theorem is referenced by:  hloml  30169  hlclat  30170  hlcvl  30171  cvr1  30221  cvrp  30227  atcvr1  30228  atcvr2  30229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-hlat 30163
  Copyright terms: Public domain W3C validator