MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlprlem Unicode version

Theorem hlprlem 19190
Description: Lemma for hlpr 19192. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
hlress.f  |-  F  =  (Scalar `  W )
hlress.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
hlprlem  |-  ( W  e.  CHil  ->  ( K  e.  (SubRing ` fld )  /\  (flds  K )  e.  DivRing  /\  (flds  K )  e. CMetSp )
)

Proof of Theorem hlprlem
StepHypRef Expression
1 hlcph 19187 . . 3  |-  ( W  e.  CHil  ->  W  e.  CPreHil )
2 hlress.f . . . 4  |-  F  =  (Scalar `  W )
3 hlress.k . . . 4  |-  K  =  ( Base `  F
)
42, 3cphsubrg 19016 . . 3  |-  ( W  e.  CPreHil  ->  K  e.  (SubRing ` fld ) )
51, 4syl 16 . 2  |-  ( W  e.  CHil  ->  K  e.  (SubRing ` fld ) )
62, 3cphsca 19015 . . . 4  |-  ( W  e.  CPreHil  ->  F  =  (flds  K ) )
71, 6syl 16 . . 3  |-  ( W  e.  CHil  ->  F  =  (flds  K ) )
8 cphlvec 19011 . . . 4  |-  ( W  e.  CPreHil  ->  W  e.  LVec )
92lvecdrng 16106 . . . 4  |-  ( W  e.  LVec  ->  F  e.  DivRing )
101, 8, 93syl 19 . . 3  |-  ( W  e.  CHil  ->  F  e.  DivRing )
117, 10eqeltrrd 2464 . 2  |-  ( W  e.  CHil  ->  (flds  K )  e.  DivRing )
12 hlbn 19186 . . . 4  |-  ( W  e.  CHil  ->  W  e. Ban )
132bnsca 19163 . . . 4  |-  ( W  e. Ban  ->  F  e. CMetSp )
1412, 13syl 16 . . 3  |-  ( W  e.  CHil  ->  F  e. CMetSp
)
157, 14eqeltrrd 2464 . 2  |-  ( W  e.  CHil  ->  (flds  K )  e. CMetSp )
165, 11, 153jca 1134 1  |-  ( W  e.  CHil  ->  ( K  e.  (SubRing ` fld )  /\  (flds  K )  e.  DivRing  /\  (flds  K )  e. CMetSp )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717   ` cfv 5396  (class class class)co 6022   Basecbs 13398   ↾s cress 13399  Scalarcsca 13461   DivRingcdr 15764  SubRingcsubrg 15793   LVecclvec 16103  ℂfldccnfld 16628   CPreHilccph 19002  CMetSpccms 19156  Bancbn 19157   CHilchl 19158
This theorem is referenced by:  hlress  19191  hlpr  19192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-tpos 6417  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-fz 10978  df-seq 11253  df-exp 11312  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-0g 13656  df-mnd 14619  df-grp 14741  df-subg 14870  df-cmn 15343  df-mgp 15578  df-rng 15592  df-cring 15593  df-ur 15594  df-oppr 15657  df-dvdsr 15675  df-unit 15676  df-drng 15766  df-subrg 15795  df-lvec 16104  df-cnfld 16629  df-phl 16782  df-cph 19004  df-bn 19160  df-hl 19161
  Copyright terms: Public domain W3C validator