Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat2 Structured version   Unicode version

Theorem hlrelat2 30202
Description: A consequence of relative atomicity. (chrelat2i 23870 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
hlrelat2.b  |-  B  =  ( Base `  K
)
hlrelat2.l  |-  .<_  =  ( le `  K )
hlrelat2.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p

Proof of Theorem hlrelat2
StepHypRef Expression
1 hllat 30163 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
2 hlrelat2.b . . . . 5  |-  B  =  ( Base `  K
)
3 hlrelat2.l . . . . 5  |-  .<_  =  ( le `  K )
4 eqid 2438 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
5 eqid 2438 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
62, 3, 4, 5latnlemlt 14515 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <-> 
( X ( meet `  K ) Y ) ( lt `  K
) X ) )
71, 6syl3an1 1218 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <-> 
( X ( meet `  K ) Y ) ( lt `  K
) X ) )
8 simp1 958 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
92, 5latmcl 14482 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
101, 9syl3an1 1218 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
11 simp2 959 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
12 eqid 2438 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
13 hlrelat2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
142, 3, 4, 12, 13hlrelat 30201 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X ( meet `  K ) Y )  e.  B  /\  X  e.  B )  /\  ( X ( meet `  K
) Y ) ( lt `  K ) X )  ->  E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
1514ex 425 . . . . 5  |-  ( ( K  e.  HL  /\  ( X ( meet `  K
) Y )  e.  B  /\  X  e.  B )  ->  (
( X ( meet `  K ) Y ) ( lt `  K
) X  ->  E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) ) )
168, 10, 11, 15syl3anc 1185 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( lt
`  K ) X  ->  E. p  e.  A  ( ( X (
meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p )  /\  ( ( X (
meet `  K ) Y ) ( join `  K ) p ) 
.<_  X ) ) )
17 simpl1 961 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  HL )
1817, 1syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Lat )
1910adantr 453 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X
( meet `  K ) Y )  e.  B
)
202, 13atbase 30089 . . . . . . . . . 10  |-  ( p  e.  A  ->  p  e.  B )
2120adantl 454 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
22 simpl2 962 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  X  e.  B )
232, 3, 12latjle12 14493 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( X (
meet `  K ) Y )  e.  B  /\  p  e.  B  /\  X  e.  B
) )  ->  (
( ( X (
meet `  K ) Y )  .<_  X  /\  p  .<_  X )  <->  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
2418, 19, 21, 22, 23syl13anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) 
.<_  X  /\  p  .<_  X )  <->  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
25 simpr 449 . . . . . . . 8  |-  ( ( ( X ( meet `  K ) Y ) 
.<_  X  /\  p  .<_  X )  ->  p  .<_  X )
2624, 25syl6bir 222 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X  ->  p  .<_  X ) )
2726adantld 455 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  p  .<_  X ) )
28 simpl3 963 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  Y  e.  B )
292, 3, 5latlem12 14509 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X ( meet `  K
) Y ) ) )
3018, 21, 22, 28, 29syl13anc 1187 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X ( meet `  K
) Y ) ) )
3130notbid 287 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  ( p  .<_  X  /\  p  .<_  Y )  <->  -.  p  .<_  ( X ( meet `  K ) Y ) ) )
322, 3, 4, 12latnle 14516 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( X ( meet `  K
) Y )  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  ( X ( meet `  K
) Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3318, 19, 21, 32syl3anc 1185 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  p  .<_  ( X (
meet `  K ) Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3431, 33bitrd 246 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  ( p  .<_  X  /\  p  .<_  Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3534, 24anbi12d 693 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  ( ( X (
meet `  K ) Y )  .<_  X  /\  p  .<_  X ) )  <-> 
( ( X (
meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p )  /\  ( ( X (
meet `  K ) Y ) ( join `  K ) p ) 
.<_  X ) ) )
36 pm3.21 437 . . . . . . . . . 10  |-  ( p 
.<_  Y  ->  ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) ) )
37 orcom 378 . . . . . . . . . . 11  |-  ( ( ( p  .<_  X  /\  p  .<_  Y )  \/ 
-.  p  .<_  X )  <-> 
( -.  p  .<_  X  \/  ( p  .<_  X  /\  p  .<_  Y ) ) )
38 pm4.55 482 . . . . . . . . . . 11  |-  ( -.  ( -.  ( p 
.<_  X  /\  p  .<_  Y )  /\  p  .<_  X )  <->  ( ( p 
.<_  X  /\  p  .<_  Y )  \/  -.  p  .<_  X ) )
39 imor 403 . . . . . . . . . . 11  |-  ( ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) )  <-> 
( -.  p  .<_  X  \/  ( p  .<_  X  /\  p  .<_  Y ) ) )
4037, 38, 393bitr4ri 271 . . . . . . . . . 10  |-  ( ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) )  <->  -.  ( -.  ( p 
.<_  X  /\  p  .<_  Y )  /\  p  .<_  X ) )
4136, 40sylib 190 . . . . . . . . 9  |-  ( p 
.<_  Y  ->  -.  ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  p  .<_  X ) )
4241con2i 115 . . . . . . . 8  |-  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  p  .<_  X )  ->  -.  p  .<_  Y )
4342adantrl 698 . . . . . . 7  |-  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  ( ( X ( meet `  K
) Y )  .<_  X  /\  p  .<_  X ) )  ->  -.  p  .<_  Y )
4435, 43syl6bir 222 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  -.  p  .<_  Y ) )
4527, 44jcad 521 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  (
p  .<_  X  /\  -.  p  .<_  Y ) ) )
4645reximdva 2820 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X )  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
4716, 46syld 43 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( lt
`  K ) X  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
487, 47sylbid 208 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
492, 3lattr 14487 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
5018, 21, 22, 28, 49syl13anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
5150exp4b 592 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  e.  A  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
5251com34 80 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  e.  A  ->  ( X  .<_  Y  -> 
( p  .<_  X  ->  p  .<_  Y ) ) ) )
5352com23 75 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( p  e.  A  ->  ( p  .<_  X  ->  p  .<_  Y ) ) ) )
5453ralrimdv 2797 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
55 iman 415 . . . . . 6  |-  ( ( p  .<_  X  ->  p 
.<_  Y )  <->  -.  (
p  .<_  X  /\  -.  p  .<_  Y ) )
5655ralbii 2731 . . . . 5  |-  ( A. p  e.  A  (
p  .<_  X  ->  p  .<_  Y )  <->  A. p  e.  A  -.  (
p  .<_  X  /\  -.  p  .<_  Y ) )
57 ralnex 2717 . . . . 5  |-  ( A. p  e.  A  -.  ( p  .<_  X  /\  -.  p  .<_  Y )  <->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) )
5856, 57bitri 242 . . . 4  |-  ( A. p  e.  A  (
p  .<_  X  ->  p  .<_  Y )  <->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) )
5954, 58syl6ib 219 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
6059con2d 110 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y )  ->  -.  X  .<_  Y ) )
6148, 60impbid 185 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   ltcplt 14400   joincjn 14403   meetcmee 14404   Latclat 14476   Atomscatm 30063   HLchlt 30150
This theorem is referenced by:  lhpj1  30821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-lat 14477  df-clat 14539  df-oposet 29976  df-ol 29978  df-oml 29979  df-covers 30066  df-ats 30067  df-atl 30098  df-cvlat 30122  df-hlat 30151
  Copyright terms: Public domain W3C validator