Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hmeoclda Unicode version

Theorem hmeoclda 26251
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
Assertion
Ref Expression
hmeoclda  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Homeo  K ) )  /\  S  e.  ( Clsd `  J ) )  -> 
( F " S
)  e.  ( Clsd `  K ) )

Proof of Theorem hmeoclda
StepHypRef Expression
1 hmeocnvcn 17452 . . 3  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Cn  J
) )
213ad2ant3 978 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Homeo  K ) )  ->  `' F  e.  ( K  Cn  J
) )
3 imacnvcnv 5137 . . 3  |-  ( `' `' F " S )  =  ( F " S )
4 cnclima 16997 . . 3  |-  ( ( `' F  e.  ( K  Cn  J )  /\  S  e.  ( Clsd `  J ) )  -> 
( `' `' F " S )  e.  (
Clsd `  K )
)
53, 4syl5eqelr 2368 . 2  |-  ( ( `' F  e.  ( K  Cn  J )  /\  S  e.  ( Clsd `  J ) )  -> 
( F " S
)  e.  ( Clsd `  K ) )
62, 5sylan 457 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J  Homeo  K ) )  /\  S  e.  ( Clsd `  J ) )  -> 
( F " S
)  e.  ( Clsd `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   `'ccnv 4688   "cima 4692   ` cfv 5255  (class class class)co 5858   Topctop 16631   Clsdccld 16753    Cn ccn 16954    Homeo chmeo 17444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-top 16636  df-topon 16639  df-cld 16756  df-cn 16957  df-hmeo 17446
  Copyright terms: Public domain W3C validator