MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnv Unicode version

Theorem hmeocnv 17453
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnv  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Homeo  J ) )

Proof of Theorem hmeocnv
StepHypRef Expression
1 hmeocnvcn 17452 . 2  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Cn  J
) )
2 hmeocn 17451 . . . . 5  |-  ( F  e.  ( J  Homeo  K )  ->  F  e.  ( J  Cn  K
) )
3 eqid 2283 . . . . . 6  |-  U. J  =  U. J
4 eqid 2283 . . . . . 6  |-  U. K  =  U. K
53, 4cnf 16976 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
6 frel 5392 . . . . 5  |-  ( F : U. J --> U. K  ->  Rel  F )
72, 5, 63syl 18 . . . 4  |-  ( F  e.  ( J  Homeo  K )  ->  Rel  F )
8 dfrel2 5124 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
97, 8sylib 188 . . 3  |-  ( F  e.  ( J  Homeo  K )  ->  `' `' F  =  F )
109, 2eqeltrd 2357 . 2  |-  ( F  e.  ( J  Homeo  K )  ->  `' `' F  e.  ( J  Cn  K ) )
11 ishmeo 17450 . 2  |-  ( `' F  e.  ( K 
Homeo  J )  <->  ( `' F  e.  ( K  Cn  J )  /\  `' `' F  e.  ( J  Cn  K ) ) )
121, 10, 11sylanbrc 645 1  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Homeo  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   U.cuni 3827   `'ccnv 4688   Rel wrel 4694   -->wf 5251  (class class class)co 5858    Cn ccn 16954    Homeo chmeo 17444
This theorem is referenced by:  hmeocnvb  17465  hmphsym  17473  xpstopnlem2  17502  hmeogrpi  25536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-top 16636  df-topon 16639  df-cn 16957  df-hmeo 17446
  Copyright terms: Public domain W3C validator